DOI QR코드

DOI QR Code

The Selection Methodology of Road Network Data for Generalization of Digital Topographic Map

수치지형도 일반화를 위한 도로 네트워크 데이터의 선택 기법 연구

  • Park, Woo Jin (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Lee, Young Min (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Yu, Ki Yun (Department of Civil & Environmental Engineering, Seoul National University)
  • Received : 2013.05.20
  • Accepted : 2013.06.26
  • Published : 2013.06.30

Abstract

Development of methodologies to generate the small scale map from the large scale map using map generalization has huge importance in management of the digital topographic map, such as producing and updating maps. In this study, the selection methodology of map generalization for the road network data in digital topographic map is investigated and evaluated. The existing maps with 1:5,000 and 1:25,000 scales are compared and the criteria for selection of the road network data, which are the number of objects and the relative importance of road network, are analyzed by using the T$\ddot{o}$pfer's radical law and Logit model. The selection model derived from the analysis result is applied to the test data, and the road network data of 1:18,000 and 1:72,000 scales from the digital topographic map of 1:5,000 scale are generated. The generalized results showed that the road objects with relatively high importance are selected appropriately according to the target scale levels after the qualitative and quantitative evaluations.

지도 일반화 기법을 이용하여 대축척 지도자료로부터 소축척 지도자료를 생산하기 위한 방법론 개발은 수치지형도의 제작, 갱신 등의 관리에 있어서 매우 중요하다. 본 연구에서는 수치지형도의 도로와 같은 네트워크 형태의 객체를 일반화하기 위한 하나의 단계인 선택 기법을 제안, 적용하였다. 이를 위해, 기존의 1:5,000 축척과 1:25,000 축척의 수치지형도를 상호 비교하여 도로 네트워크 객체의 선택과 관련된 기준(선택 객체의 개수, 상대적 중요도) 들을 T$\ddot{o}$pfer의 radical 법칙과 Logit 모형을 이용하여 분석하였다. 여기서 분석된 결과를 바탕으로 하여 테스트 데이터에 대해 선택 모델을 적용하여 1:5,000 수치지형도 도로중심선 레이어로부터 일반화된 1:18,000, 1:72,000 축척의 네트워크 데이터셋을 도출하였다. 일반화된 결과에 대하여 정성적, 정량적 평가를 실시한 결과, 상대적으로 높은 중요도를 가진 네트워크 객체들이 목표 축척수준에 맞게 적절히 선택된 결과를 나타내었다.

Keywords

References

  1. Choe, B. and Kim, Y. (2007), Framework and Workflows for Spatial Database Generalization, Transactions in GIS, Vol. 11, No. 1, pp. 101-114.
  2. Gujarati, D. N. and Por ter, D. C. (2008), Basic Econometrics 5th edition, McGraw-Hill, New York, pp. 541-573.
  3. Liu, X., Zhan, F. B., and Ai, T. (2010), Road selection based on Voronoi diagrams and ''strokes'' in map generalization, International Journal of Applied Earth Observation and Geoinformation, 12S, S194-S202.
  4. Mackaness, W. A. and Mackechnie, G. A. (1999), Automating the Detection and Simplification of Junctions in Road Networks, GeoInformatica, Vol. 3, No. 2, pp. 185-200. https://doi.org/10.1023/A:1009807927991
  5. MicroImages, Inc, (1999), Google Maps Structure, http://www.microimages.com/documentation/TechGuides/76googleMapsStruc.pdf (last data accessed: 16 May 2013)
  6. National Geographic Information Institute (2010), Attribute Lists of Terrains and Features of Digital Map ver. 2.0.
  7. Park, W., Ji, B., and Yu, K. (2012), Control methodology of map generalization scale using Töpfer's radical law, Proceedings on 2012 Spring Conference of Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography, 26-27 April, Gangneung, South Korea, pp. 309-311. (in Korean with English abstract)
  8. Thomson, R. C. and Richardson, D. E. (1999), The 'good continuation' principle of perceptual organization applied to the generalization of road network, In: Proceedings of the 8th International Symposium on Spatial Data Handling, Vancouver, Canada, pp. 1215-1223.
  9. Topfer, F. and Pillewizer, W. (1966), The Principles of Selection, The Cartographic Journal, Vol. 3, No. 1, pp. 10-16. https://doi.org/10.1179/caj.1966.3.1.10
  10. Touya, G. (2010), A Road Network Selection Process Based on Data Enrichment and Structure Detection, Transactions in GIS, Vol. 14, No. 5, pp. 595-614. https://doi.org/10.1111/j.1467-9671.2010.01215.x