References
- Correa, J. C. (1995). A new estimator of entropy, Communications in Statistics-Theory and Methods, 24, 2439-2449. https://doi.org/10.1080/03610929508831626
- Cressie, N. (1976). On the logarithms of high-order spacings, Biometrika, 63, 343-355. https://doi.org/10.1093/biomet/63.2.343
- D'Agostino, R. B. and Stephens, M. A. (1986). Goodness-of-fit Techniques, Marcel Dekker, New York.
- Dudewicz, E. J. and van der Meulen, E. C. (1981). Entropy-based test for uniformity, Journal of the American Statistical Association, 76, 967-974. https://doi.org/10.1080/01621459.1981.10477750
- Dudewicz, E. J. and van der Meulen, E. C. (1987). New Perspectives in Theoretical and Applied Statistics, Wiley, New York.
- Ebrahimi, N., P ughoeft, K. and Soofi, E. S. (1994). Two measures of sample entropy, Statistics and probability Letters, 20, 225-234. https://doi.org/10.1016/0167-7152(94)90046-9
- Edgeman, R. L. (1990). Assessing the inverse Gaussian distribution assumption, IEEE Transactions on Reliability, 39, 352-355. https://doi.org/10.1109/24.103017
- Gokhale, D. V. (1983). On the entropy-based goodness-of-fit tests, Computational Statistics and Data Analysis, 1, 157-165. https://doi.org/10.1016/0167-9473(83)90087-7
- Gyorfi, L. and van der Meulen, E. C. (1987). Density-free convergence properties of various estimators of entropy, Computational Statistics and Data Analysis, 5, 425-436. https://doi.org/10.1016/0167-9473(87)90065-X
- Gyorfi, L. and van der Meulen, E. C. (1990). An entropy estimate based on a kernel density estimation. In: Limits Theorems in Probability and Statistics, Colloquia Mathematica Societatis Janos Bolyai, 57, 229-240.
- Hall, P. (1984). Limit theorems for sums of general functions of m-spacings, Mathematical Statistics and Data Analysis, 1, 517-532.
- Hall, P. (1986). On powerful distributional tests on sample spacings, Journal of Multivariate Analysis, 19, 201-255. https://doi.org/10.1016/0047-259X(86)90027-8
- Jaynes, E. T. (1957). Information theory and statistical mechanics, Physical Review, 106, 620-630. https://doi.org/10.1103/PhysRev.106.620
- Michael, J. R., Schucany, W. R. and Hass, R. W. (1976). Generating random variables using transformation with multiple roots, The American Statistician, 30, 88-90.
- Mudholkar, G. S. and Tian, L. (2002). An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test, Journal of Statistical Planning and Inference, 102, 211-221. https://doi.org/10.1016/S0378-3758(01)00099-4
- Proschan, F. (1963). Theoretical explanation of observed decreasing failure rate, Technometrics, 5, 375-384. https://doi.org/10.1080/00401706.1963.10490105
- Shannon, C. E. (1948). A mathematical theory of communications, Bell System Technical Journal, 27, 379-423, 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- Shuster, J. J. (1968). On the inverse Gaussian distribution function, Journal of the American Statistical Association, 63, 1514-1516. https://doi.org/10.1080/01621459.1968.10480942
- van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on spacings, Scandinavian Journal of Statistics, 19, 61-72.
- Vasicek, O. (1976). A test for normality based on sample entropy, Journal of the Royal Statistical Society, Series B, 38, 54-59.