DOI QR코드

DOI QR Code

Information Sharing Model based on Adaptive Group Communication for Cloud-Enabled Robots

클라우드 로봇을 위한 적응형 그룹통신 기반 정보공유 모델

  • Mateo, Romeo Mark (Research & Development Team, NEXUSCOMMUNITY) ;
  • Lee, Jaewan (Dept. of Information and Telecommunication Engineering, Kunsan National University)
  • Received : 2013.05.21
  • Accepted : 2013.08.01
  • Published : 2013.08.31

Abstract

In cloud robotics, the model to share information efficiently is still a research challenge. This paper presents an information sharing model for cloud-enabled robots to collaborate and share intelligence. To provide the efficient message dissemination, an adaptive group communication based on multi-agent is proposed. The proposed algorithm uses a weight function for the link nodes to determine the significant links. The performance evaluation showed that the proposed algorithm produced minimal message overhead and was faster to answer queries because of the significant links compared to traditional group communication methods.

클라우드 로봇에서, 효율적인 정보공유 모델은 연구과제이다. 본 논문에서는 클라우드 기반 로봇들이 서로 연동하고 지식을 공유하기 위한 지식공유 모델을 제시한다. 효율적인 메시지 전송을 위해 멀티 에이전트 기반 적응형 그룹 통신을 제시하며, 연결(link) 노드는 주요 링크를 결정하기 위한 비중함수를 사용한다. 성능평가 결과, 제시한 알고리즘이 최소 메세지 오버헤드를 나타내었으며, 전통적인 그룹통신 방법에 비해 주요 링크를 사용함으로 인해 질의에 대한 응답이 빠름을 보였다.

Keywords

References

  1. E. Guizzo, "Cloud robotics: connected to the cloud, robots get smarter," at http://spectrum.ieee.org/automaton/robotics/robotics-software/cloud-robotics.
  2. Google's android apps for cloud robotics, at http://rj3sp.blogspot.com/2011/05/googles-android-apps-for-cloud-robotics.html.
  3. Technical Committee on Service Robots, at http://www.service-robots.org/technologies.htm.
  4. T. Mukai, S. Hirano, H. Nakashima, Y. Sakaida, and S. Guo, "Realization and safety measures of patient transfer by nursing-care assistant robot RIBA with tactile sensors," Journal of Robotics and Mechatronics, Vol.23,No.11, 2011, pp. 360-369. https://doi.org/10.20965/jrm.2011.p0360
  5. S. Khanna, J. S. Naor and D. Raz, "Control message aggregation in group communication protocols," in Proc. Automata, Languages and Programming, LNCS Vol.2380, 2002, pp.135-146.
  6. H. Tezuka, N. Katafuchi, Y. Nakamura, T. Machino, Y. Nanjo, S. Iwaki, and K. I. Shimokura, "Robot platform architecture for information sharing," Journal of Robotics and Mechatronics, Vol.18 No.3, 2006, pp. 325-332. https://doi.org/10.20965/jrm.2006.p0325
  7. A. Sanfeliu, N. Hagita and A. Saffiotti, "Network robot system," Robotics and Autonomous System, Vol.56, 2008, pp.793-797. https://doi.org/10.1016/j.robot.2008.06.007
  8. J. Baxter, E. Burke, J. Garibaldi, M. Norman, "Multi-robot search and rescue: a potential field based approach," studies in computational intelligence, Vol.76, 2007, pp. 9-16. https://doi.org/10.1007/978-3-540-73424-6_2
  9. K. Nagatani, Y. Okada, N. Tokunaga, K. Yoshida, S. Kiribayashi, K. Ohno, E. Takeuchi, S. Tadokoro, H. Akiyama, I. Noda, T. Yoshida, E. Koyanagi, "Multi-robot exploration for search and rescue missions: A report of map building in RoboCupRescue 2009," in Proc. IEEE International Workshopon Safety Security Rescue Robotics, 2009, pp. 1-6.
  10. H. Sugiyama, T. Tsujioka and M. Murata, "Collaborative movement of rescue robots for reliable and effective networking in disaster area," In Proc. International Conference on Collaborative Computing: Networking, Applications and Worksharing, 2005.
  11. U. Witkowski, M. El-Habbal, S. Herbrechtsmeier, A. Tanoto, J. Penders, L. Alboul and V. Gazi, "Ad-hoc network communication infrastructure for multirobot systems in disaster scenarios," In Proc. EURON/ IARP International Workshop on Robotics for Risky Interventions and Surveillance of the Environment, 2008.
  12. K. Schiling, "Networked robots: research challenges" in ETSI: Networked Mobile Wireless Robotics Workshop.
  13. Robot Operating System (ROS), at http://www.ros.org/wiki/ROS.
  14. R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F. Kong, A. S. Kumar, K. D. Meng, and G. W. Kit, "DAvinCi: a cloud computing framework for service robots," in Proc. IEEE International Conference on Robotics and Automation, 2010, pp. 3084-3089.
  15. S. M. Das, Y. C. Hu, C. S. George Lee and Y. H. Lu, "An efficient group communication protocol for mobile robots," in Proc ICRA, 2005, pp. 87-92.
  16. S. Piao, Q. Zhong, Y. Liu and Q. Li, "Research of group communication method on multi-robot system," Communications in Computer and Information Science, Vol. 159, No. 9, 2011, pp. 457-461. https://doi.org/10.1007/978-3-642-22691-5_80
  17. F. Schweitzer, "Active brownian particles: artificial agents in physics," Stochastic Dynamics, Berlin: Springer, Lecture Notes in Physics, Vol. 484, 1997, pp. 358-371. https://doi.org/10.1007/BFb0105623
  18. R. M. A. Mateo, H. H. Yang and J. Lee, "Managing virtual organizational tasks using simvo in grid environment," in Proc. ICONI & APIC-IST, 2010, pp. 669-673.
  19. A. Tiderko, T, Bachran, F. Hoeller and D. Schulz, "RoSe - A framework for multicast communication via unreliable networks in multi-robot systems," Robotics and Autonomous Systems, Vol. 5, No. 12, 2008, pp. 1017-1026
  20. M. Matteucci, "Publish/Subscribe Middleware for Robotics: Requirements and State of the Art," Technical Report 2003.
  21. M. A. Mastouri and S. Hasnaoui, "Performance of a publish/subscribe middleware for the real-time distributed control systems," IJCSNS, Vol. 7, No. 1, 2007.

Cited by

  1. A Study on Distributed Processing of Big Data and User Authentication for Human-friendly Robot Service on Smartphone vol.15, pp.1, 2014, https://doi.org/10.7472/jksii.2014.15.1.55