References
- Deraemaeker, A., Reybders, E., De Roeck, G. and Kullaa, J. (2007), "Vibration-based structural health monitoring using output-only measurements under changing environment", Mech. Syst. Signal Pr., 22(1), 34-56.
- Dilena, M. and Morassi, A. (2011), "Dynamic testing of damaged bridge", Mech. Syst. Signal Pr., 25(5),1485-1507. https://doi.org/10.1016/j.ymssp.2010.12.017
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review, Los Alamos National Laboratory Report LA-3070-MS.
- Gersch, W., Nielsen, N.N. and Akaike, H. (1973), "Maximum likelihood estimation of structural parameters from random vibration data", J. Sound Vib., 31(3), 295-308. https://doi.org/10.1016/S0022-460X(73)80274-3
- He, X. and De Roeck, G. (1997), "System identification of mechanical structures by a high-order multivariate autoregressive model", Comput. Struct., 64(1-4), 341-351. https://doi.org/10.1016/S0045-7949(96)00126-5
- Hoshiya, M. and Saito, E. (1984), "Structural identification by extended Kalman filter", J. Eng. Mech.-ASCE, 110(12), 1757-1770. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1757)
- Inman, D.J. (2008), Engineering vibration, 3rd Ed., Upper Saddle River, N.J., PTR Prentice Hall.
- Kim, C.W., Kawatani, M. and Kim, K.B. (2005), "Three-dimensional dynamic analysis for bridge-vehicle interaction with roadway roughness", Comput. Struct., 83(19-20), 1627-1645. https://doi.org/10.1016/j.compstruc.2004.12.004
- Kim, C.W. and Kawatani, M. (2008), "Pseudo-static approach for damage identification of bridges based on coupling vibration with a moving vehicle", Struct. Infrastruct. E., 4(5), 371-379. https://doi.org/10.1080/15732470701270082
- Kim, C.W. and Kawatani, M. and Hao, J. (2010), "Model parameter identification of short span bridges under a moving vehicle by means of multivariate AR model", Struct. Infrastruct. E., 8(5), 459-472.
- Kim, C.W., Isemoto, R., Kawatani, M. and Sugiura, K. (2011), "Structural diagnosis of bridge using outputonly vibration in moving vehicle laboratory experiment", JSCE J. Appl. Mech. (In Japanese)
- Ljung, L. (1999), System identification-Theory for the user, 2nd Ed., PTR Prentice Hall, Upper Saddle River, M.J.
- Nair, K.K., Kiremidjian, A.S. and Law, K.H. (2006), "Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure", J. Sound Vib., 291(1-2), 349-368. https://doi.org/10.1016/j.jsv.2005.06.016
- Pappa, R.S. and Ibrahim, S.R. (1981), "A parametric study of the Ibrahim time domain modal identification algorithm", Shock Vib., 51(3), 43-72.
- Peeters, B. and De Roeck, G. (2001), "One-year monitoring of the Z24-Bridge: environmental effects versus damage events", Earthq. Eng. Struct. D., 30(2).
- Shinozuka, M., Yun C.B. and Imai, H. (1982), "Identification of linear structural dynamic systems", J. Eng. Mech. - ASCE, 108(6), 1371-1390.
- Wang, Z. and Fang, T. (1986), "A time-domain method for identifying model parameters", J. Appl. Mech.-ASME, 53(3), 28-32. https://doi.org/10.1115/1.3171732
- Zhang, Q.W. (2007), "Statistical damage identification for bridges using ambient vibration data", Comput. Struct., 85(7-8), 476-485. https://doi.org/10.1016/j.compstruc.2006.08.071
Cited by
- Application of Flame-Sprayed Coatings as Heating Elements for Polymer-Based Composite Structures vol.24, pp.7, 2015, https://doi.org/10.1007/s11666-015-0302-7
- Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades vol.70-71, 2016, https://doi.org/10.1016/j.ymssp.2015.09.007
- Machine learning algorithms for damage detection: Kernel-based approaches vol.363, 2016, https://doi.org/10.1016/j.jsv.2015.11.008
- Repairable k-out-n system work model analysis from time response vol.12, pp.6, 2013, https://doi.org/10.12989/cac.2013.12.6.775
- A Bayesian approach for vibration-based long-term bridge monitoring to consider environmental and operational changes vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.395