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INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL

SUBGROUPS

Jeong Gon Lee, Kul Hur and Pyung Ki Lim†,∗

Abstract. We introduce the concept of level subgroups of an interval-
valued fuzzy subgroup and study some of its properties. These level
subgroups in turn play an important role in the characterization of
all interval-valued fuzzy subgroup of a prime cyclic group.

1. Introduction

In 1975, Zadeh[12] suggested the notion of interval-valued fuzzy sets
as another generalization of fuzzy sets introduced by himself[11]. After
that time, Biswas[1] applied it to group theory, and Gorzalczany[4] sug-
gested a method of inference in approximate reasoning by using interval-
valued fuzzy sets. Moreover Montal and Samanta[10] introduced the
concept of topology of interval-valued fuzzy sets and investigate some
of its properties and Jun et. al[6] investigated interval-valued fuzzy
strong semi-openness and interval-valued fuzzy strong semi-continuity.
Recently, Hur et. al[3, 9] studied interval-valued smooth topological
spaces and interval-valued fuzzy generalized bi-ideals of a semigroup,
respectively. Furthermore, Kang and Hur[8] investigated interval-valued
fuzzy subgroups and rings, and Kang[7] dealt with problems of the image
and preimage of an interval-valued fuzzy set under a homomorphism. In
particular, Cheong and Hur[2] studied interval-valued fuzzy ideals and
bi-ideals of a semigroup, and Lim et. al[5] investigated interval-valued
fuzzy normal subgroups.

In this paper, we obtain a similar characterization of all interval-
valued fuzzy subgroups of finite cyclic groups. For this, we study some

Received July 22, 2013. Accepted July 29, 2013.
2010 Mathematics Subject Classification. 03F55, 20N25.
Key words and phrases. interval-valued fuzzy set, interval-valued fuzzy subgroup,

level subgroup.
†This paper was supported by Wonkwang University in 2013.
∗Corresponding author



526 Jeong Gon Lee, Kul Hur and Pyung Ki Lim

properties of level subgroups of an interval-valued fuzzy subgroup in the
first part of the paper. These level subgroups in turn play an important
role in the above characterization.

2. Preliminaries

We will list some concepts and results needed in the later sections.
Throughout this paper, we will denote the unit interval [0, 1] as I.

Let D(I) be the set of all closed subintervals of the unit interval [0, 1].
The elements of D(I) are generally denoted by capital letters M,N, · · ·,
and note that M = [ML,MU ], where ML and MU are the lower and
the upper end points respectively. Especially, we denote 0 = [0, 0], 1
= [1, 1], and a = [a, a] for every a ∈ (0, 1). We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ML = NL,MU = NU ),
(ii) (∀M,N ∈ D(I)) (M = N ≤ML ≤ NL,MU ≤ NU ).

For every M ∈ D(I), the complement of M , denoted by MC , is defined
by MC = 1−M = [1−MU , 1−ML](See [10]).

Definition 2.1.[4,12] A mapping A : X → D(I) is called an interval -
valued fuzzy set(in short, IVFS ) in X, denoted by A = [AL, AU ], if
AL, AU ∈ IX such that AL ≤ AU , i.e., AL(x) ≤ AU (x) for each x ∈ X,
where AL(x)[resp AU (x)] is called the lower [resp upper ] end point of x
to A. For any [a, b] ∈ D(I), the interval-valued fuzzy set A in X defined

by A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X is denoted by ˜[a, b] and

if a = b, then the IVFS ˜[a, b] is denoted by simply ã. In particular, 0̃

and 1̃ denote the interval -valued fuzzy empty set and the interval -valued
fuzzy whole set in X, respectively.

We will denote the set of all IVFSs in X as D(I)X . It is clear that
set A = [A,A] ∈ D(I)X for each A ∈ IX .

Definition 2.2.[10] Let A,B ∈ D(I)X and let {Aα}α∈ Γ ⊂ D(I)X .
Then

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .
(ii) A = B iff A ⊂ B and B ⊂ A.
(iii) AC = [1−AU , 1−AL].
(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃
α∈ Γ

Aα = [
∨
α∈ Γ

ALα,
∨
α∈ Γ

AUα ].
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(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂
α∈ Γ

Aα = [
∧
α∈ Γ

ALα,
∧
α∈ Γ

AUα ].

Definition 2.3.[8] Let A be an IVFS in a set X and let [λ, µ] ∈ D(I).

Then the set A[λ, µ] = {x ∈ X : AL(x) ≥ λ and AU (x) ≥ µ} is called a
[λ, µ]-level subset of A.

The following is the immediate result of Definition 2.3.

Proposition 2.4. Let A be an IVFS in a set X and let [λ1, µ1], [λ2, µ2] ∈
ImA. If λ1 ≤ λ2 and µ1 ≤ µ2, then A[λ2, µ2] ⊂ A[λ1, µ1].

Definition 2.5.[8] Let G be a group and let A ∈ D(I)G. Then A is called
an interval-valued fuzzy subgroup ( in short, IV G) of G if it satisfies the
following conditions:

(i) AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥ AU (x) ∧ AU (y) for each
x, y ∈ G.

(ii) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x) for each x ∈ G.

We will denote the set of all IVGs of G as IVG(G).

Result 2.A.[1, Proposition 3.1] Let A be an IVG of a group G. Then
(a) A(x−1) = A(x).

(b) AL(x) ≤ AL(e) and AU (x) ≤ AU (e) for each x ∈ G, where e is
the identity element of G.

Result 2.B.[8, Propositions 4.16 and 4.17] Let A be an IVFS of a
group G. Then A ∈ IVG(G) if and only if for each [λ, µ] ∈ D(I) with

λ ≤ AL(e) and µ ≤ AU (e), A[λ, µ] is a subgroup of G.

Result 2.C.[8, Proposition 4.12] Let Gp be the cyclic group of prime
order p. Then A ∈ IVG(Gp) if and only if AL(x) = AL(1) ≤ AL(0) and
AU (x) = AU (1) ≤ AU (0) for any 0 6= x ∈ Gp.

3. Level subgroups

From Result 2.B, we define the following concept.
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Definition 3.1. Let G be a group and let A ∈ IVG(G) and let [λ, µ] ∈
D(I) such that λ ≤ AL(e) and µ ≤ AU (e). Then A[λ, µ] is called a
[λ, µ]-level subgroup of A.

Let G be a finite group. Then the number of subgroups of G is fi-
nite. However, the number of level subgroups of an IVG A appears to
be infinite. Indeed, since every level subgroup is a subgroup of G, not
all these level subgroups are distinct.

Example 3.2. Let G be the Klein four-group:

G = {a, b, a2 = b2 = (ab)2 = e}.

Then the elements of G are e, a, b and ab. Moreover, it is clear that the
number of subgroups of G is finite. We define a mapping A =: G→ D(I)
as follows :

A(e) = [λ0, µ0], A(a) = [λ1, µ1], A(b) = [λ2, µ2] and A(ab) = [λ3, µ3],

where [λi, µi] ∈ D(I) (i = 0, 1, 2 and 3), λ0 ≥ λi, µ0 ≥ µi (i = 1, 2, 3)
and λ3 ≥ λ1∧λ2, µ3 ≥ µ1∧µ2. Then we can easily see that A ∈ IVG(G).

Consider the family P = {A[λ, µ] : [λ, µ] ∈ D(I), λ ≤ AL(e) and µ ≤
AU (e)}. Then, by Result 2.B, P is a family of level subgroups of G.
Furthermore, P is infinite. But we can see that all members of P are
not distinct.

Proposition 3.3. Let G be a group and let A ∈ IVG(G). Two level

subgroups A[t1, s1] and A[t2, s2] (with t1 < t2 and s1 < s2) of A are
equal if and only if there is no x ∈ G such that t1 < AL(x) < t2 and
s1 < AU (x) < s2.

Proof. (⇒): Suppose A[t1, s1] = A[t2, s2]. Assume that there exists an
x ∈ G such that t1 < AL(x) < t2 and s1 < AU (x) < s2. Then x ∈
A[t1, s1] and x /∈ A[t2, s2]. Thus, by Proposition 2.4, A[t2, s2] $ A[t1, s1].
This contradicts the hypothesis.

(⇐): Suppose the necessary condition holds. Since t1 < t2 and

s1 < s2, by Proposition 2.4, A[t2, s2] ⊂ A[t1, s1]. Let x ∈ A[t1, s1].
Then t1 ≤ AL(x) and s1 ≤ AU (x). By the hypothesis, t2 ≤ AL(x)

and s2 ≤ AU (x). Thus x ∈ A[t2, s2]. So A[t1, s1] ⊂ A[t2, s2]. Hence

A[t1, s1] = A[t2, s2]. �
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Corollary 3.4. Let G be a finite group of order n and let A ∈ IVG(G).

Let ImA = {[ti, si]) : A(x) = [ti, si] for some x ∈ G}. Then {A[ti, si]} is
the set of the only level subgroups of A.

Proof. By Result 2.B, A[ti, si] is a subgroup of G. Let [λ, µ] ∈ D(I)
such that [λ, µ] /∈ ImA.

Case(i) : Suppose ti < λ < tj and si < µ > sj , where [ti, si], [tj , sj ] ∈
ImA. Then, by Proposition 3.3, A[ti, si] = A[tj , sj ] = A[λ, µ].

Case(ii) : Suppose λ < tr and µ < sr, where [tr, sr] is the least

element in ImA. Then, by Proposition 3.3, A[tr, sr] = G = A[λ, µ].
Case(iii) : Suppose t0 < λ and s0 < µ, where [t0, s0] is the greast

element of ImA. Then, by Proposition 3.3, A[λ, µ] = A[ti, si] = {e}.
Hence, in any cases, for each [λ, µ] ∈ D(I), the [λ, µ]-level subgroup is

one of {A[ti, si]}, where [ti, si] ∈ ImA. �

Proposition 3.5. Any subgroup H of a group G can be realized as a
level subgroup of some IVG of G.

Proof. We define a mapping A : G→ D(I) as follows: For each x ∈ G,
A(x) = [t, s] if x ∈ H and A(x) = [0, 0] if x /∈ H,

where [t, s] ∈ D(I). Let x, y ∈ G.
Case (i) : Suppose x, y ∈ H. Then xy ∈ H. Thus

AL(xy) = AL(x) = AL(y) = t and AU (xy) = AU (x) = AU (y) = s.

So

AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).

Since x ∈ H, x−1 ∈ H. Thus AL(x−1) = t and AU (x−1) = s. Hence
AL(x−1) ≥ AL(x) and AU (x−1) ≤ AU (x).

Case (ii) : Suppose x ∈ H and y /∈ H. Then xy /∈ H. Thus

AL(x) = t, AL(y) = AL(xy) = 0 and AU (x) = s, AU (y) = AU (xy) = 0.

So

AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).

Also, we have

AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x).

Case (iii) : Suppose x /∈ H and y ∈ H. Then, we have the same ones
as results of case (ii).
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Case (iv) : Suppose x /∈ H and y /∈ H. Then xy may or may not
belong to H. In any case, we have

AL(xy) ≥ AL(x) ∧AL(y), AU (xy) ≥ AU (x) ∧AU (y)

and

AL(x−1) ≥ AL(x), AU (x−1) ≥ AU (x).

Hence, in all cases, A ∈ IVG(G). In fact, H = A[t, s]. This completes
the proof. �

The following result is the generalization of Proposition 3.5.

Proposition 3.6. Let G be a group and let the following be any chain
of subgroups

G0 ⊂ G1 ⊂ · · · ⊂ Gr = G.

Then there exists an interval-valued fuzzy subgroup of G whose level
subgroups are precisely the members of this chain.

Proof. Consider the following set of real numbers:

t0 > t1 > · · · > tr and s0 > s1 > · · · > sr,

where [ti, si] ∈ D(I) for each i. We define a mapping A : G → D(I) as
follows:

A(G0) = [t0, s0] and A(Ĝi) = [ti, si],

where Ĝi = Gi \Gi−1 for i = 1, 2, · · · , r. Let x, y ∈ G.

Case (i) : Suppose x, y ∈ Ĝi. Then A(x) = [ti, si] = A(y). Since Gi
is a subgroup, xy ∈ Gi. Thus either xy ∈ Gi or xy ∈ Gi−1. In any case,

AL(xy) ≥ ti = AL(x) ∧AL(y) and AU (xy) ≥ si = AU (x) ∧AU (y).

On the other hand, x−1 ∈ Gi. Thus

AL(x−1) ≥ ti = AL(x) and AU (x−1) ≥ si = AU (x).

Case (ii) : Suppose x ∈ Ĝi, y ∈ Ĝj and i > j. Then A(x) = [ti, si]
and A(y) = [tj , sj ]. Since Gj ⊂ Gi and Gi is a subgroup, xy ∈ Gi. Thus

AL(xy) ≥ ti = AL(x) ∧AL(y) and AU (xy) ≥ si = AU (x) ∧AU (y).

On the other hand, x−1 ∈ Ci. Thus

AL(x−1) ≥ ti = AL(x) and AU (x−1) ≥ si = AU (x).

So, in either case, we can see that A ∈ IVG(G).
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Now, from the definition of A, ImA= {[t0, s0], · · · , [tr, sr]}. Thus the
level subgroups of A are given by the chain of subgroups

A[t0, s0] ⊂ A[t1, s1] ⊂ · · · ⊂ A[tr, sr] = G.

We claim that A[ti, si] = Gi, 0 < i ≤ r. By the definitions of A and
A[ti, si], it is clear that Gi ⊂ A[ti, si]. Let x ∈ A[ti, si]. Then

AL(x) ≥ ti and AU (x) ≥ si.

Thus x /∈ Gj for j > i. So A(x) ∈ {[t1, s1], · · · , [ti, si]}, i.e., x ∈ Gk
for some k ≤ i. Since Gk ⊂ Gi, x ∈ Gi. Thus A[ti, si] ⊂ Gi. Hence
A[ti, si] = Gi, 0 ≤ i ≤ r. This completes the proof. �

As a consequence of Proposition 3.6, the level subgroups of an IVG
A form a chain. Since

AL(x) ≤ AL(e) and AU (x) ≤ AU (e)

for each x ∈ G, A[t0, s0] is the smallest level subgroup of A, where
A(e) = [t0, s0]. Thus we have the chain

(e) = A[t0, s0] ⊂ A[t1, s1] ⊂ · · · ⊂ A[tr, sr] = G,(3.1)

where t0 > t1 > · · · > tr and s0 > s1 > · · · > sr. We denote this chain
(3.1) of level subgroups by C(A). In general, as all the subgroups of G
do not form a chain, it follows that not all subgroups of G are level sub-
groups of a given interval-valued fuzzy subgroup. So it is an interesting
problem to find an IVG A of G which accommodates as many subgroups
of G as possible in C(A).

Proposition 3.7. Let G be a finite group such that G = Gp1 ×Gp2 ×
· · ·×Gpr , where the Gpi are prime cyclic groups of orders pi. Then there
exists an A ∈ IVG(G) such that C(A) is a maximal chain of length r+1.

Proof. We prove by induction on r. Suppose r = 1. Then G = Cp1 .
Then, by Result 2.C, there exists an A ∈ IVG(G) such that A(e) =
[t0, s0], A(x) = [t1, s1] for each e 6= x ∈ G and t1 < t0 and s1 < s0. Thus

A[t0, s0] = (e) and A[t1, s1] = G. So A[t0, s0] ⊂ A[t1, s1] is the maximal
chain and of length 2. Hence the theorem is true for r = 1.

Now let r > 1 and suppose the theorem is true for the integers ≤ r−1.
Let H = Gp1×Gp2×· · ·×Gpr−1 . Then G = H×Gpr . Define the mapping
A : G −→ D(I) as follows :

A(e) = [t0, s0],
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A(̂Gp1) = [t1, s1],

A ̂(Gp1 ×Gp2) = [t2, s2],

· · · · · · · · · · · · · · · · · · · · · ,
A ̂(H ×Gpr) = [tr, sr],

where t0 > t1 > t2 > · · · > tr, s0 > s1 > s2 < · · · > sr, ti ≤ si and

Ĝp1 = Gp1 \ (e), ̂Gp1 ×Gp2 = Gp1 ×Gp2 \Gp1 , and so on. We will show
that A ∈ IVG(G). Let x, y ∈ G.

Case (i): Suppose x, y ∈ H. Then xy ∈ H. By the induction,

AL(xy) ≥ AL(x) ∧AL(y), AU (xy) ≥ AU (x) ∧AU (y)

and
AL(x−1) ≥ AL(x), AU (x−1) ≥ AU (x).

Case (ii): Suppose x ∈ H and y ∈ G \ H. Then xy /∈ H. Thus
A(xy) = [tr, sr], A

L(x) ≥ tr−1, A
U (x) ≥ sr−1 and A(y) = [tr, sr]. So

AL(xy) ≥ AL(x) ∧AL(y), AU (xy) ≥ AU (x) ∧AU (y)

and
AL(x−1) ≥ AL(x), AU (x−1) ≥ AU (x).

Case (iii): Suppose x ∈ G \H and y ∈ H. Then, we have the same
ones as the results of case(ii).

Case (iv): Suppose x /∈ H and y /∈ H. Then also we can easily see
that

AL(xy) ≥ AL(x) ∧AL(y), AU (xy) ≥ AU (x) ∧AU (y)

and
AL(x−1) ≥ AL(x), AU (x−1) ≥ AU (x).

So, in either cases, A ∈ IVG(G). Moreover,

A[t0, s0] = (e),

A[t1, s1] = Gr1 ,

A[t2, s2] = Gr1 ×Gr2 ,
· · · · · · · · · · · · · · · · · · ,
A[tr, sr] = H ×Grr .

Hence A[t0, s0] ⊂ A[t1, s1] ⊂ · · · ⊂ A[tr, sr] is C(A) which is maximal and
of length r + 1. This completes the proof. �

Remark 3.8. In the same way, we can find an IVG A with the maximal
C(A) in the following cases :

(i) G is a cyclic p-group.



Interval-valued Fuzzy Subgroups and Level Subgroups 533

(ii) G is the direct product of cyclic p-group.
(iii) G is a finite abelian group.

We can easily check these cases by adopting the same technique as
proof in Proposition 3.7.

In the following example, we show that two interval-valued fuzzy sub-
groups of a group may have an identical family of level subgroups but
the interval-valued fuzzy subgroups may not be equal.

Example 3.9. Consider the Klein four-group G given in Example 3.2.
Let [ti, si] ∈ D(I) such that t0 > t1 > t2, s0 > s1 > s2, where i = 0, 1, 2.
We define a mapping A : G→ D(I) as follows :

A(e) = [t0, s0], A(a) = [t1, s1], A(b) = [t2, s2], A(ab) = [t2, s2].

Then clearly A ∈ IVG(G) and ImA= {[t0, s0], [t1, s1], [t2, s2]}. Moreover,
the level subgroups of A are

A[t0, s0] = {e}, A[t1, s1] = {e, a}, A[t2, s2] = G.

Now let [λi, µi] ∈ D(I) such that λ0 > λ1 > λ2, µ0 > µ1 > µ2, for
i = 0, 1, 2 and {[t0, s0], [t1, s1], [t2, s2]} ∩ {[λ0, µ0], [λ1, µ1], [λ2, µ2]} = φ.
We define a mapping B : G→ D(I) as follows :

B(e) = [λ0, µ0], B(a) = [λ1, µ1], B(b) = [λ2, µ2], B(ab) = [λ2, µ2].

Then clearly B ∈ IVG(G). Moreover, the level subgroups of B are

B[λ0, µ0] = {e}, B[λ1, µ1] = {e, a}, B[λ2, µ2] = G.

Hence A and B have the same family of level subgroups but A 6= B. �

The following is the immediate result of Definition 2.3.

Lemma 3.10. Let G be a finite group and let A ∈ IVG(G). If

[ti, si], [tj , sj ] ∈ ImA such that A[ti, si] = A[tj , sj ], then [ti, si] = [tj , sj ].

Proposition 3.11 Let G be a finite group and let A,B ∈ IVG(G) with
identical family of level subgroups. If ImA= {[t0, s0], · · · , [tr, sr]} and
ImB= {[λ0, µ0], · · · , [λk, µk]}, where t0 > · · · > tr, s0 > · · · > sr and
λ0 > · · · > λk, µ0 > · · · > µk, then we have

(a) r = k.

(b) A[ti, si] = B[λi, µi], 0 ≤ i ≤ r.
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(c) if x ∈ G such that A(x) = [ti, si], then B(x) = [λi, µi], 0 ≤ i ≤ r.

Proof. (a) By Corollary 3.4, the only level subgroups of A and B are

the two families {A[ti, si]} and {B[λi, µi]}. Hence, by hypothesis, r = k.
(b) By (a) and Corollary 3.3, there exist two chains of level subgroups

:

A[t0, s0] ⊂ A[t1, s1] ⊂ · · · ⊂ A[tr, sr] = G

and

B[λ0, µ0] ⊂ B[λ1, µ1] ⊂ · · · ⊂ B[λk, µk] = G.

From Proposition 2.4, it follows clearly that
Suppose [ti, si], [tj , sj ] ∈ ImA such that ti > tj and si > sj . Then

A[ti, si] ⊂ A[tj , sj ]. (3.2)

Suppose [λi, µi], [λj , µj ] ∈ ImB such that λi > λj and µi > µj . Then

B[λi, µi] ⊂ B[λj , µj ]. (3.3)

Since {A[ti, si]} = {B[λi, µi]}, it is clear that A[t0, s0] = B[λ0, µ0]. Now by

hypothesis, A[t1, s1] = B[λj , µj ] for some j > 0. Assume that A[t1, s1] =
B[λj , µj ] for some j > 1. Again, we have that B[λ1, µ1] = A[ti, si] for
some ti > t1 and si > s1. It is clear that [ti, si] = [t1, s1]. Thus, by (3.2),

A[ti, si] = B[λ1, µ1] ⊂ B[λj , µj ]. (3.4)

Also, by (3.3),

B[λj , µj ] = A[t1, s1] ⊂ A[ti, si]. (3.5)

However, (3.4) and (3.5) contradict one another as inclusions are both
proper inclusions. So, we must have that

A[t1, s1] = B[λ1, µ1].
The rest of the proof follows by induction on i by using arguments
exactly on the same lines as above. Hence A[ti, si] = B[λj , µj ], 0 ≤ i ≤ r.

(c) Let x ∈ G such that A(x) = [ti, si] and B(x) = [λj , µj ]. Then,

by (b), A[ti, si] = B[λi, µi]. Since x ∈ A[ti, si], x ∈ B[λi, µi]. Thus B(x) =

[λj , µj ], where λj ≥ λi and µj ≥ µi. By (3.3), B[λj , µj ] ⊂ B[λi, µi].

By (b), B[λj , µj ] = A[tj , sj ]. Since x ∈ B[λj , µj ], x ∈ A[tj , sj ]. Thus

A(x) = [ti, si], where ti ≥ tj and si ≥ sj . By (3.2), A[ti, si] ⊂ A[tj , sj ].

On the other hood, by (b), A[ti, si] = B[λi, µi] and A[tj , sj ] = B[λj , µj ].

Consequently, we have that B[λi, µi] ⊂ B[λj , µj ]. So B[λi, µi] = B[λj , µj ].
Hence, by Lemma 3.10, [λi, µi] = [λj , µj ]. This completes the proof. �
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Theorem 3.12. Let A,B be two IVGs of a finite group G such that
the families of level subgroups of A and B are identical. Then A = B if
and only if ImA = ImB.

Proof. (⇒) : It is obvious.
(⇐) : Suppose ImA = ImB. Let ImA = {[t0, s0], · · · , [tr, sr]} and let

ImB = {[λ0, µ0], · · · , [λr, µr]} such that t0 > · · · > tr, s0 > · · · > sr and
λ0 > · · · > λr, µ0 > · · · > µr. Since [λ0, µ0] ∈ ImB and ImA = ImB,
[λ0, µ0] = [tk0 , sk0 ] for some k0. Suppose [tk0 , sk0 ] 6= [t0, s0]. Then tk0 <
t0 and sk0 < s0. Since [λ1, µ1] ∈ ImA, [λ1, µ1] = [tk1 , sk1 ] for some k1.
Thus we have

λ0 > λ1 and µ0 > µ1 implies that tk0 > tk1 and sk0 > sk1 .

By proceeding in this way, we have

tk0 > tk1 > · · · > tkr and sk0 > sk1 > · · · > skr ,

where [λ0, µ0] = [tk0 , sk0 ], tk0 > t0 and sk0 > s0. They contradict the
fact that ImA = ImB. So we must have that [λ0, µ0] = [t0, s0]. Arguing
in this manner, we obtain that

[λi, µi] = [ti, si], 0 ≤ i ≤ r.
Now let g0, · · · , gr be distinct elements ofG such thatA(gi) = [ti, si], 0 ≤
i ≤ r. Then, by Proposition 3.11, B(gi) = [λi, µi], 0 ≤ i ≤ r. Since
[λi, µi] = [ti, si], A(x) = B(x) for each x ∈ G. Hence A = B. This
completes the proof. �

The following result is easy to prove.

Lemma 3.13. Let G be a finite group. We define a relation ∼ on
IVG(G) as follows : For any A,B ∈ IVG(G), A ∼ B if and only of they
have an identical family of level subgroups. Then ∼ is an equivalence
relation on IVG(G).

We note that by Example 3.9, two elements A and B of IVG(G) may
be such that A ∼ B but A and B need not be equal.

For each A ∈ IVG(G), let [A] denote the equivalence class of A. If
G is finite, then the number of possible distinct level subgroups of G is
finite since each level subgroup is a subgroup of G in the usual sense. By
Proposition 3.4, since any subgroup of a group G can be realized as the
level subgroup of some interval-valued fuzzy subgroup of G, it follows
that the number of possible chains of level subgroups is also finite. As
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each equivalence class is characterized completely by its chain of level
subgroups, we have the following result.

Corollary 3.14. Let G be a finite group and let ∼ be the equivalence
relation on IVG(G) defined by Lemma 3.13. Then IVG(G)/ ∼ is finite.

Theorem 3.15. Let G be a finite group and let LG(G) = {A[λ, µ] :

A[λ, µ] is a level subgroup of G and A ∈ IVG(G)}. Let SG(G) denote
the set of all subgroups of G. Then there is a one-to-one correspondence
between SG(G) and LG(G)/ ∼, where ∼ denote a suitable equivalence
relation on LG(G).

Proof. Let ∼ be the equivalence relation on IVG(G) defined by Lemma
3.13. Then IVG(G)/ ∼ is an partition of G. Thus

IVG(G) = [S1] ∪ [S2] ∪ · · · [Sk],
where [Si], 1 ≤ i ≤ k, are all distinct equivalence classes. Let us denote

{A[tj , sj ]
i : 0 ≤ j ≤ λi and [tj , sj ]}

to be the chain of level subgroups associated with the equivalence class
[Si]. Then LG(G)/ ∼ is a finite set give by

LG(G)/ ∼= {[A(tj ,sj)
i ] : 0 ≤ j ≤ λi and 1 ≤ i ≤ k},

where [A
[tj , sj ]
i ] denotes the equivalence class containing A

[(tj , sj ]
i .

From Proposition 3.5, it follows that each subgroup of G is of the

form A
[tj , sj ]
i . We define a mapping f : LG(G)/ ∼→ SG(G) as follows :

f([A
[tj , sj ]
i ]) = A

[tj , sj ]
i .

Then we can easily show that f is bijective. This completes the proof.
�

4. Characterization of interval-valued fuzzy subgroups of fi-
nite cyclic groups

Proposition 4.1. Let G be a cyclic p-group of order pn, where p is a
prime. Let A ∈ IVG(G), let x, y ∈ G and let O(x) denote the order of
x.

(a) If O(x) > O(y), then AL(y) ≥ AL(x) and AU (y) ≥ AU (x).
(b) If O(x) = O(y), then A(x) = A(y).
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Proof. We prove by induction on n. Suppose n = 1. Then O(G) = p.
Thus the theorem is true by Result 2.A. Let n > 1 and suppose the
theorem is true for all integers ≤ n − 1. Let H be a subgroup of order
pn−1 and let x, y ∈ G.

Case (i): Suppose x, y ∈ H. Then, by the induction, the results
follow.

Case (ii): Suppose x /∈ H and y ∈ H. ThenO(x) = pn andO(y) = pr,
where r ≤ n− 1. Thus x is a generator of G. So there exists an integer
l such that y = xl. Hence

AL(y) = AL(x) ∧ · · · ∧AL(x)(l times) ≥ AL(x)

and

AU (y) = AU (x) ∧ · · · ∧AU (x)(l times) ≥ AU (x)

Case (iii) : Suppose x ∈ H and y /∈ H. Then, we have the same ones
as the result of case(ii).

Case (iv) : Suppose x /∈ H and y /∈ H. Then O(x) = O(y) = pn.
Thus x and y are generators of G . So there exist integers l and m such
that y = xl and x = ym. Hence

AL(x) ≥ AL(y) ∧ · · · ∧AL(y)(m times) ≥ AL(y),

AU (x) ≥ AU (y) ∧ · · · ∧AU (y)(m times) ≥ AU (y),

and

AL(y) = AL(x) ∧ · · · ∧AL(x)(l times) ≥ AL(x),

AU (y) = AU (x) ∧ · · · ∧AU (x)(l times) ≥ AU (x), .

Therefore A(x) = A(y). This completes the proof. �

Proposition 4.1 is not true in general as shown in the following ex-
amples.

Example 4.2. Consider the Kleins 4 - group :

G = {a, b : a2 = b2 = (ab)2 = e}.

We define a mapping A = (µA, νA) : G→ D(I) as follows:

A(e) = [t0, s0], A(a) = [t1, s1], A(b) = [t2, s2] = A(ab),

where [t0, s0] > [t1, s1] > [t2, s2 and [ti, si] ∈ D(I) for i = 0, 1, 2.
Then clearly A ∈ IVG(G). But, even though O(a) = O(b), A(a) 6= A(b).
�
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For a cyclic group it can be seen that O(a) = O(b) implies A(a) =
A(b). But O(a) 6= O(b) may also imply A(a) = A(b).

Example 4.3. Let G = (a) be a cyclic group of order 6. We define a
mapping A : G→ D(I) as follows:

A(e) = [t0, s0], A(a) = A(a3) = A(a5) = [t1, s1], A(a2) = A(a4) = [t2, s2],

where [t0, s0] > [t1, s1] > [t2, s2] and [ti, si] ∈ D(I) for i = 0, 1, 2. Then
clearly A ∈ IV G(G) and O(a3) 6= O(a). But A(a) = A(a3). �

Now we give the characterization of all IVGs of a finite cyclic group
in the following. In fact, the following result is the spacial case of Propo-
sition 3.6.

Theorem 4.4. Let G be a finite cyclic group and let A ∈ D(I)G.
Then A is an IVG of G if and only if there exists a maximal chain
of subgroups (e) = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G such that for any
[t0, s0], [t1, s1], · · ·, [tr, sr] ∈ ImA with t0 > t1 > · · · > tr and s0 > s1 >

· · · > sr, A(e) = [t0, s0], A(Ĝ1) = [t1, s1], · · ·, A(Ĝr) = [tr, sr], where

Ĝi = Gi \Gi−1 for i = 1, 2, · · ·, r.

Proof. (⇐) : Suppose the necessary condition holds. We define a

mapping A : G→ D(I) by A(e) = [t0, s0], A(Ĝ1) = [t1, s1], · · ·, A(Ĝr) =
[tr, sr]. Let x, y ∈ G.

Case (i) : Suppose x, y ∈ Gi but not in Gi−1. Then A(x) = A(y) =
[ti, si] and xy ∈ Gi or Gi−1. Thus

AL(xy) ≥ ti = AL(x) ∧AL(y)

and

AU (xy) ≥ si = AU (x) ∧AL(y).

Moreover, AL(x−1) ≥ ti = AU (x) and AU (x−1) ≥ si = AU (x).
Case (ii) : Suppose x ∈ Gi but not in Gi−1 and y ∈ Gj but not Gj−1,

where i > j. Then A(x) = [ti, si] and A(y) = [tj , sj ]. Thus

AL(xy) ≥ ti = AL(x) ∧AL(y)

and

AU (xy) ≥ si = AU (x) ∧AU (y).

Also AL(x−1) ≥ ti = AL(x) and AU (x−1) ≥ si = AU (x). Hence, in all,
A ∈ IVG(G).
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(⇒) : Suppose A ∈ IVG(G). Then, by Corollary 3.4, A[t0, s0], · · · ,
A[tr, sr] are the only level subgroups of A, where {[t0, s0], [t1, s1], · ·
·, [tr, sr]} = ImA, t0 > t1 > · · · > tr and s0 > s1 > · · · > sr. Fur-

thermore, the level subgroups form a chain C(A) : A[t0, s0] ⊂ A[t1, s1] ⊂
· · · ⊂ A[tr, sr]. Thus clearly, A[t0, s0] = (e) and A(tr,sr) = G.

Suppose C(A) is maximal and let Gi = A[ti, si]. Then the necessary
condition holds. Assume that C(A) is not maximal. Then we redefine
C(A) by introducing subgroups of G. Let us call this chain as

G0 ⊂ G1 ⊂ · · · ⊂ Gs,
where G0 = A[t0,s0] = (e) and Gs = A[tr, sr] = G. Then for each

Gi between A[t0, s0](= G0) and A[t1, s1](= Gj for some j), A(Ĝi) =

[t1, s1]. Similarly, for each Gk between A[ti, si] and A[ti+1, si+1], A(Ĝk) =

[ti+1, si+1] and A(Ĝs) = [tr, sr]. Thus

A(Ĝ0) = [t0, s0],

A(Ĝ1) = · · · = A(Ĝj) = [t1, s1],

A(Ĝj+1) = · · · = A(Ĝk) = [tr−1, sr−1],

· · · · ··,
A(Ĝs) = [tr, sr],

where Ĝ1 = G1 − G0, Ĝ2 = G2 − G1, · · ·, Ĝs = Gs − Gs−1, t0 > t1 >
· · · > tr and s0 > s1 > · · · < sr. This completes the proof. �

The following is the immediate result of Theorem 4.4.

Corollary 4.5. Let G be a cyclic p-group of order pr and let A ∈ D(I)G.
Then A ∈ IVG(G) if and only if for each x ∈ G with O(x) = pi, A(x) =
[ti, si], where i = 0, 1, · · ·, r, t0 > t1 > · · · > tr and s0 > s1 > · · · > sr.

Remark 4.6. We can also prove this Corollary by using Proposition
4.1.
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