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AN IMPROVEMENT OF THE HÖRMANDER-MIKHLIN

MULTIPLIER CONDITIONS

Yaryong Heo

Abstract. We give an Lp Fourier multiplier condition which im-

plies the Hörmander-Mikhlin multiplier theorem.

1. Introduction and statement of results

The Fourier transform of a Schwartz function f on Rd is defined by

f̂(ξ) =

∫
Rd

e−2πix·ξf(x)dx

and its inverse Fourier transform by

F−1[f ](x) =

∫
Rd

e2πix·ξf(ξ)dξ.

For each α ∈ R, the Sobolev space Wα(Rd) is defined as the space of all

tempered distributions u ∈ S ′(Rd) such that

‖u‖Wα =

(∫
Rd

(1 + |x|)2α|û(x)|2dx
)1/2

<∞.

Let m ∈ L∞(Rd), then for f ∈ S(Rd) the Fourier multiplier operator

Tm is defined by

T̂mf = mf̂.
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Let ϕ ∈ S(Rd) be a radial function such that

supp(ϕ̂) ⊂ {ξ : 1/2 ≤ |ξ| ≤ 2},
∑
s∈Z

ϕ̂(ξ/2s) = 1 for all ξ 6= 0.

The Hörmander-Mikhlin multiplier theorem [6] states that ifm ∈ L∞(Rd)
and

(1.1) sup
s∈Z
‖m(2s·)ϕ̂(·)‖Wα(Rd) <∞ for some α > d/2,

then Tm is bounded on Lp(Rd) for all 1 < p <∞. LetHs = F−1[m(2s·)ϕ̂(·)]
then by Plancherel’s theorem the condition (1.1) is equivalent to

(1.2)

sup
s∈Z

(
‖Hs‖L2[(1+|x|)2αdx]

)
:= sup

s∈Z

(∫
Rd
|Hs(x)|2(1 + |x|)2αdx

) 1
2

<∞,

for some α > d/2. In this paper we give an Lp Fourier multiplier condi-

tion which implies the Hörmander-Mikhlin multiplier theorem.

Theorem 1. Let d ≥ 1. If ε > 0 then for 1 < p <∞

(1.3) ‖Tmf‖p ≤ Cε sup
s∈Z

(
‖Hs‖L1[(1+|x|)εdx]

)
‖f‖p.

By Hölder’s inequality, if α > d
2 + ε then

(1.4) ‖Hs‖L1[(1+|x|)εdx] ≤ Cα,ε‖Hs‖L2[(1+|x|)2αdx].

Therefore by (1.1), (1.2) and (1.4), Theorem 1 implies the Hörmander-

Mikhlin multiplier theorem.

2. Reductions

Notation. For each k ∈ Z, Dk(Rd) denotes the collection of dyadic

cubes Q ⊂ Rd with side-length 2k. Let D =
⋃
k∈ZDk. For each cube

Q ⊂ Rd with side-length 2k, we write L(Q) = k. For each cube Q and

r > 0, rQ denotes the cube having r times side-length of Q with the

same center as Q. The d-dimensional Lebesgue measure of a set E ⊂ Rd

will be denoted by |E| or meas(E).
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Let ϕ be a radial Schwartz function such that ϕ̂ is supported in

{ξ : 1/2 < |ξ| < 2} and satisfies∑
s∈Z

[ϕ̂(2−sξ)]2 = 1 for all ξ 6= 0.

As in [7], let ψ be a radial Schwartz function with compact support in

{|x| < 1/10} and ψ̂ > 0 on {ξ : 1/4 < |ξ| < 4}. Let η = F−1[ϕ̂(ψ̂)−1].

For each s ∈ Z, let

Hs = F−1[m(2s·)ϕ̂(·)].

Now let Ks = 2sdHs(2
s·), ψs = 2sdψ(2s·) and ηs = 2sdη(2s·) then

(2.1) Tmf =
∑
s∈Z

ψs ∗Ks ∗ (ηs ∗ f).

Theorem 1 will be proved in Section 3 by using atomic decompositions

constructed from Peetre’s maximal square function (cf. [8], [10] and [9])

using ideas from work by Chang and Fefferman [1].

3. Atomic decompositions and proof of Theorem 1

As in [7] we use atomic decompositions constructed from a non-

tangential Peetre type maximal square function (cf. [8–10]).

Atomic decompositions

Consider the non-tangential version of Peetre’s maximal square func-

tion

Sf(x) =
(∑

s

sup
|y|≤10d·2−s

|ηs ∗ f(x+ y)|2
)1/2

.

Then ‖Sf‖p ≤ Cp‖f‖p for 1 < p < ∞. So by (2.1), the proof of the Lp

boundedness of Tm reduces to∥∥∑
s

ψs ∗Ks ∗ (ηs ∗ f)
∥∥
p
≤ Cε sup

s

(
‖Hs‖L1[(1+|x|)εdx]

)
‖Sf‖p.

For each integer j, we introduce the set

Ωj = {x : Sf(x) > 2j}.
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Let Qsj be the set of all dyadic cubes of side-length 2−s which have the

property that |Q ∩ Ωj | ≥ |Q|/2 but |Q ∩ Ωj+1| < |Q|/2. Note that for

fixed s, the sets ⋃
Q∈Qsj

Q, j ∈ Z,

are disjoint. We also set

Ω∗j = {x : MχΩj (x) > 100−d}

where M is the Hardy-Littlewood maximal operator. Ω∗j is an open set

containing Ωj and |Ω∗j | ≤ Cd|Ωj |.
Let Wj be the set of all dyadic cubes W such that the 20-fold dilate

of W is contained in Ω∗j and W is maximal with respect to this property.

Clearly, the interiors of these cubes are disjoint, and we shall refer to

them as Whitney cubes for Ω∗j . Observe that {10W : W ∈ Wj} have

bounded overlap.

Note that each Q ∈ Qsj is contained in a unique W ∈ Wj . For each

W ∈ Wj , set

As,W,j =
∑
Q∈Qs

j
Q⊂W

(ηs ∗ f)χQ;

note that only terms with L(W ) + s ≥ 0 occur. Since any dyadic cube

W can be a Whitney cube for several Ω∗j , we also define ”cumulative

atoms”,

As,W =
∑

j:W∈Wj

As,W,j .

Note that

ηs ∗ f =
∑

W∈
⋃
jWj

As,W =
∑
j

∑
W∈Wj

As,W,j .

Standard facts about these atoms are summarized in the following lemma

that is taken from [7].

Lemma 3.1. For each j ∈ Z, the following inequalities hold.

(1)

(3.1)
∑

W∈Wj

∑
s

‖As,W,j‖22 ≤ C22jmeas(Ωj).
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(2) There is a constant Cd such that for every assignment W 7→
s(W ) ∈ Z, defined on Wj , and for 0 ≤ p ≤ 2,

(3.2)
∑

W∈Wj

meas(W )‖As(W ),W,j‖p∞ ≤ Cd2pjmeas(Ωj).

With this notation we need to show the inequality

(3.3)∥∥∥∑
s,j

∑
`≥0

∑
W∈Wj

L(W )=l−s

ψs ∗Ks ∗As,W,j
∥∥∥
p
≤ Cε sup

s

(
‖Hs‖L1[(1+|x|)εdx]

)
‖Sf‖p,

for any ε > 0 and 1 < p ≤ 2. For each integer l in this sum, we split Ks

into short range and long range pieces, Ksh
s,` and K lg

s,`. To define them,

let

Ks(x) = 2sdHs(2
sx) = 2sdHs(2

sx)χ(|2sx|≤2`) + 2sdHs(2
sx)χ(|2sx|>2`)

:= Ksh
s,`(x) +K lg

s,`(x),

where χ denotes the characteristic function.

Lemma 3.2. We have the following.

(1) For 1 ≤ p ≤ ∞

(3.4) ‖Ksh
s,` ∗ f‖p ≤ C‖Hs‖1‖f‖p.

(2) If ε > 0 then for 1 ≤ p ≤ ∞

(3.5) ‖K lg
s,` ∗ f‖p ≤ C2−ε`

(
‖Hs‖L1[(1+|x|)εdx]

)
‖f‖p.

Proof. For (3.4), by scaling

‖Ksh
s,` ∗ f‖p ≤ C‖Ksh

s,`‖1‖f‖p ≤ C‖Hsχ(|x|≤2`)‖1‖f‖p.

For (3.5), by scaling

‖K lg
s,` ∗ f‖p ≤ C‖K

lg
s,`‖1‖f‖p ≤ C‖Hsχ(|x|>2`)‖1‖f‖p.

And so if ε > 0 then

‖K lg
s,` ∗ f‖p ≤ C2−ε`

(
‖Hs‖L1[(1+|x|)εdx]

)
‖f‖p.
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Lemma 3.3 (Lemma 2.2 in [7]). Let 0 < p0 < p1 <∞. Let {Fj}j∈Z
be a sequence of measurable functions on a measure space {Ω, µ}, and

let {sj} be a sequence of nonnegative numbers. Assume that, for all j,

the inequality

‖Fj‖pvpv ≤M
pv2jpvsj

holds for v = 0 and v = 1. Then for every p ∈ (p0, p1), there is a

constant C = C(p0, p1, p) such that

‖
∑
j

Fj‖pp ≤ CpMp
∑
j

2jpsj .

For the short range estimate, it suffices to show that

(3.6)
∥∥∥∑
s,j

∑
`≥0

∑
W∈Wj

L(W )=`−s

ψs ∗Ksh
s,` ∗As,W,j

∥∥∥τ
τ
≤ Cτ sup

s∈Z
(‖Hs‖1)τ ‖Sf‖ττ

for 1 ≤ τ ≤ 2. If we have (3.6) then τ = p will give the desired result.

To prove (3.6), by Lemma 3.3, it suffices to show that for fixed j, and

for 1 ≤ τ ≤ 2,

(3.7)
∥∥∥∑

s

∑
`≥0

∑
W∈Wj

L(W )=`−s

ψs∗Ksh
s,`∗As,W,j

∥∥∥τ
τ
≤ Cτ sup

s∈Z
(‖Hs‖1)τ meas(Ωj).

If we show (3.7), then by Lemma 3.3 the left hand side of (3.6) is con-

trolled by

Cτ sup
s∈Z

(‖Hs‖1)τ
∑
j

2jτmeas(Ωj) ≤ Cτ sup
s∈Z

(‖Hs‖1)τ ‖Sf‖ττ .

Now we prove (3.7). For τ = 2, note that

∥∥∥∑
s

∑
`≥0

∑
W∈Wj

L(W )=`−s

ψs∗Ksh
s,`∗As,W,j

∥∥∥2

2
=
∥∥∥ ∑
W∈Wj

∑
s

ψs∗Ksh
s,L(W )+s∗As,W,j

∥∥∥2

2
.
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For each fixed j, since
∑

s ψs ∗ Ksh
s,L(W )+s ∗ As,W,j is supported in W ∗

and W ∗, W ∈ Wj , have bounded overlap, by (3.4) and (3.1),

The left hand side of (3.7) ≤ C2
∑

W∈Wj

∥∥∥∑
s

ψs ∗Ksh
s,L(W )+s ∗As,W,j

∥∥∥2

2

≤ C2
∑

W∈Wj

∑
s

∥∥∥Ksh
s,L(W )+s ∗As,W,j

∥∥∥2

2

≤ C2
∑

W∈Wj

∑
s

sup
s∈Z

(‖Hs‖1)2 ‖As,W,j‖22

≤ C2 sup
s∈Z

(‖Hs‖1)2 22jmeas(Ωj).

Inequality (3.7) for τ < 2 follows from (3.7) for τ = 2 by Hölder’s

inequality. Here we use that the relevant expressions are supported in

Ω∗j and |Ω∗j | ≤ Cd|Ωj |.
For the long range estimate, that is,

(3.8)∥∥∥∑
s,j

∑
`≥0

∑
W∈Wj

L(W )=`−s

ψs ∗K lg
s,l ∗As,W,j

∥∥∥
p
≤ Cε sup

s

(
‖Hs‖L1[(1+|x|)εdx]

)
‖Sf‖p,

for ε > 0 and 1 < p ≤ 2, we use

(3.9)
∥∥∑

s

ψs ∗ hs
∥∥τ
τ
≤ C

(∑
s

‖hs‖ττ
)1/τ

, 1 ≤ τ ≤ 2.

And so by Minkowski’s inequality and (3.9), the left hand side of (3.8)

is dominated by

(3.10)
∑
`≥0

(∑
s

∥∥∥∑
j

∑
W∈Wj

L(W )=`−s

K lg
s,` ∗As,W,j

∥∥∥p
p

)1/p

.

For fixed `, s, by (3.5), if ε > 0 then

(3.11)∥∥∥∑
j

∑
W∈Wj

L(W )=`−s

K lg
s,`∗As,W,j

∥∥∥
p
≤ C2−ε`‖Hs‖L1[(1+|x|)εdx]

∥∥∥∑
j

∑
W∈Wj

L(W )=`−s

As,W,j

∥∥∥
p
.
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For fixed `, s, the functions
∑

W∈Wj
L(W )=`−s

As,W,j , j ∈ Z, live on disjoint

sets (since the sets
⋃
Q∈Qsj

Q, j ∈ Z, are disjoint). Hence∥∥∥∑
j

∑
W∈Wj

L(W )=`−s

As,W,j

∥∥∥p
p

=
∑
j

∥∥∥ ∑
W∈Wj

L(W )=`−s

As,W,j

∥∥∥p
p

=
∑
j

∑
W∈Wj

L(W )=`−s

‖As,W,j‖pp.

Therefore by (3.2)

∑
s

∥∥∥∑
j

∑
W∈Wj

L(W )=`−s

As,W,j

∥∥∥p
p
≤
∑
j

∑
s

∑
W∈Wj

L(W )=`−s

‖As,W,j‖pp

≤
∑
j

∑
W∈Wj

‖A`−L(W ),W,j‖pp

≤
∑
j

∑
W∈Wj

meas(W )‖A`−L(W ),W,j‖p∞

≤ C
∑
j

2jpmeas(Ωj) ≤ C‖Sf‖pp ≤ C‖f‖pp.

(3.12)

By (3.11) and (3.12), it follows that the expression (3.10) is

≤
∑
`>0

C2−`ε sup
s

(
‖Hs‖L1[(1+|x|)εdx]

)
‖f‖p ≤ Cε sup

s

(
‖Hs‖L1[(1+|x|)εdx]

)
‖f‖p,

if ε > 0 and 1 < p ≤ 2. And this completes the proof.
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[6] Lars Hörmander, Estimates for translation invariant operators in Lp spaces, Acta

Math. 104 (1960), 93-140.
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