AN IMPROVEMENT OF THE HÖRMANDER-MIKHLIN MULTIPLIER CONDITIONS

Yaryong Heo

Abstract

We give an L^{p} Fourier multiplier condition which implies the Hörmander-Mikhlin multiplier theorem.

1. Introduction and statement of results

The Fourier transform of a Schwartz function f on \mathbb{R}^{d} is defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} \mathrm{e}^{-2 \pi \mathrm{i} x \cdot \xi} f(x) d x
$$

and its inverse Fourier transform by

$$
\mathcal{F}^{-1}[f](x)=\int_{\mathbb{R}^{d}} \mathrm{e}^{2 \pi \mathrm{i} x \cdot \xi} f(\xi) d \xi
$$

For each $\alpha \in \mathbb{R}$, the Sobolev space $W^{\alpha}\left(\mathbb{R}^{d}\right)$ is defined as the space of all tempered distributions $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that

$$
\|u\|_{W^{\alpha}}=\left(\int_{\mathbb{R}^{d}}(1+|x|)^{2 \alpha}|\widehat{u}(x)|^{2} d x\right)^{1 / 2}<\infty .
$$

Let $m \in L^{\infty}\left(\mathbb{R}^{d}\right)$, then for $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ the Fourier multiplier operator T_{m} is defined by

$$
\widehat{T_{m} f}=m \widehat{f} .
$$

Received June 26, 2013. Accepted July 10, 2013.
2010 Mathematics Subject Classification. 42B15.
Key words and phrases. Fourier multiplier.
This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A1011889).

Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ be a radial function such that

$$
\operatorname{supp}(\widehat{\varphi}) \subset\{\xi: 1 / 2 \leq|\xi| \leq 2\}, \quad \sum_{s \in \mathbb{Z}} \widehat{\varphi}\left(\xi / 2^{s}\right)=1 \quad \text { for all } \xi \neq 0
$$

The Hörmander-Mikhlin multiplier theorem [6] states that if $m \in L^{\infty}\left(\mathbb{R}^{d}\right)$ and

$$
\begin{equation*}
\sup _{s \in \mathbb{Z}}\left\|m\left(2^{s} \cdot\right) \widehat{\varphi}(\cdot)\right\|_{W^{\alpha}\left(\mathbb{R}^{d}\right)}<\infty \quad \text { for some } \alpha>d / 2 \tag{1.1}
\end{equation*}
$$

then T_{m} is bounded on $L^{p}\left(\mathbb{R}^{d}\right)$ for all $1<p<\infty$. Let $H_{s}=\mathcal{F}^{-1}\left[m\left(2^{s} \cdot\right) \widehat{\varphi}(\cdot)\right]$ then by Plancherel's theorem the condition (1.1) is equivalent to

$$
\begin{equation*}
\sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{L^{2}\left[(1+|x|)^{2 \alpha} d x\right]}\right):=\sup _{s \in \mathbb{Z}}\left(\int_{\mathbb{R}^{d}}\left|H_{s}(x)\right|^{2}(1+|x|)^{2 \alpha} d x\right)^{\frac{1}{2}}<\infty \tag{1.2}
\end{equation*}
$$

for some $\alpha>d / 2$. In this paper we give an L^{p} Fourier multiplier condition which implies the Hörmander-Mikhlin multiplier theorem.

Theorem 1. Let $d \geq 1$. If $\epsilon>0$ then for $1<p<\infty$

$$
\begin{equation*}
\left\|T_{m} f\right\|_{p} \leq C_{\epsilon} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|f\|_{p} . \tag{1.3}
\end{equation*}
$$

By Hölder's inequality, if $\alpha>\frac{d}{2}+\epsilon$ then

$$
\begin{equation*}
\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]} \leq C_{\alpha, \epsilon}\left\|H_{s}\right\|_{L^{2}\left[(1+|x|)^{2 \alpha} d x\right]} \tag{1.4}
\end{equation*}
$$

Therefore by (1.1), (1.2) and (1.4), Theorem 1 implies the HörmanderMikhlin multiplier theorem.

2. Reductions

Notation. For each $k \in \mathbb{Z}, \mathcal{D}_{k}\left(\mathbb{R}^{d}\right)$ denotes the collection of dyadic cubes $Q \subset \mathbb{R}^{d}$ with side-length 2^{k}. Let $\mathcal{D}=\bigcup_{k \in \mathbb{Z}} \mathcal{D}_{k}$. For each cube $Q \subset \mathbb{R}^{d}$ with side-length 2^{k}, we write $L(Q)=k$. For each cube Q and $r>0, r Q$ denotes the cube having r times side-length of Q with the same center as Q. The d-dimensional Lebesgue measure of a set $E \subset \mathbb{R}^{d}$ will be denoted by $|E|$ or meas (E).

Let φ be a radial Schwartz function such that $\widehat{\varphi}$ is supported in $\{\xi: 1 / 2<|\xi|<2\}$ and satisfies

$$
\sum_{s \in \mathbb{Z}}\left[\widehat{\varphi}\left(2^{-s} \xi\right)\right]^{2}=1 \quad \text { for all } \xi \neq 0
$$

As in [7], let ψ be a radial Schwartz function with compact support in $\{|x|<1 / 10\}$ and $\widehat{\psi}>0$ on $\{\xi: 1 / 4<|\xi|<4\}$. Let $\eta=\mathcal{F}^{-1}\left[\widehat{\varphi}(\widehat{\psi})^{-1}\right]$. For each $s \in \mathbb{Z}$, let

$$
H_{s}=\mathcal{F}^{-1}\left[m\left(2^{s} \cdot\right) \widehat{\varphi}(\cdot)\right] .
$$

Now let $K_{s}=2^{s d} H_{s}\left(2^{s} \cdot\right), \psi_{s}=2^{s d} \psi\left(2^{s}.\right)$ and $\eta_{s}=2^{s d} \eta\left(2^{s} \cdot\right)$ then

$$
\begin{equation*}
T_{m} f=\sum_{s \in \mathbb{Z}} \psi_{s} * K_{s} *\left(\eta_{s} * f\right) . \tag{2.1}
\end{equation*}
$$

Theorem 1 will be proved in Section 3 by using atomic decompositions constructed from Peetre's maximal square function (cf. [8], [10] and [9]) using ideas from work by Chang and Fefferman [1].

3. Atomic decompositions and proof of Theorem 1

As in [7] we use atomic decompositions constructed from a nontangential Peetre type maximal square function (cf. [8-10]).

Atomic decompositions

Consider the non-tangential version of Peetre's maximal square function

$$
S f(x)=\left(\sum_{s} \sup _{|y| \leq 10 d \cdot 2^{-s}}\left|\eta_{s} * f(x+y)\right|^{2}\right)^{1 / 2} .
$$

Then $\|S f\|_{p} \leq C_{p}\|f\|_{p}$ for $1<p<\infty$. So by (2.1), the proof of the L^{p} boundedness of T_{m} reduces to

$$
\left\|\sum_{s} \psi_{s} * K_{s} *\left(\eta_{s} * f\right)\right\|_{p} \leq C_{\epsilon} \sup _{s}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|S f\|_{p}
$$

For each integer j, we introduce the set

$$
\Omega_{j}=\left\{x: S f(x)>2^{j}\right\} .
$$

Let \mathcal{Q}_{j}^{s} be the set of all dyadic cubes of side-length 2^{-s} which have the property that $\left|Q \cap \Omega_{j}\right| \geq|Q| / 2$ but $\left|Q \cap \Omega_{j+1}\right|<|Q| / 2$. Note that for fixed s, the sets

$$
\bigcup_{Q \in \mathcal{Q}_{j}^{s}} Q, \quad j \in \mathbb{Z},
$$

are disjoint. We also set

$$
\Omega_{j}^{*}=\left\{x: M \chi_{\Omega_{j}}(x)>100^{-d}\right\}
$$

where M is the Hardy-Littlewood maximal operator. Ω_{j}^{*} is an open set containing Ω_{j} and $\left|\Omega_{j}^{*}\right| \leq C_{d}\left|\Omega_{j}\right|$.

Let \mathcal{W}_{j} be the set of all dyadic cubes W such that the 20 -fold dilate of W is contained in Ω_{j}^{*} and W is maximal with respect to this property. Clearly, the interiors of these cubes are disjoint, and we shall refer to them as Whitney cubes for Ω_{j}^{*}. Observe that $\left\{10 W: W \in \mathcal{W}_{j}\right\}$ have bounded overlap.

Note that each $Q \in \mathcal{Q}_{j}^{s}$ is contained in a unique $W \in \mathcal{W}_{j}$. For each $W \in \mathcal{W}_{j}$, set

$$
A_{s, W, j}=\sum_{\substack{Q \in \mathcal{Q}_{j}^{s} \\ Q \subset W}}\left(\eta_{s} * f\right) \chi_{Q} ;
$$

note that only terms with $L(W)+s \geq 0$ occur. Since any dyadic cube W can be a Whitney cube for several Ω_{j}^{*}, we also define "cumulative atoms",

$$
A_{s, W}=\sum_{j: W \in \mathcal{W}_{j}} A_{s, W, j} .
$$

Note that

$$
\eta_{s} * f=\sum_{W \in \cup_{j} \mathcal{W}_{j}} A_{s, W}=\sum_{j} \sum_{W \in \mathcal{W}_{j}} A_{s, W, j} .
$$

Standard facts about these atoms are summarized in the following lemma that is taken from [7].

Lemma 3.1. For each $j \in \mathbb{Z}$, the following inequalities hold.
(1)

$$
\begin{equation*}
\sum_{W \in \mathcal{W}_{j}} \sum_{s}\left\|A_{s, W, j}\right\|_{2}^{2} \leq C 2^{2 j} \operatorname{meas}\left(\Omega_{j}\right) . \tag{3.1}
\end{equation*}
$$

(2) There is a constant C_{d} such that for every assignment $W \mapsto$ $s(W) \in \mathbb{Z}$, defined on \mathcal{W}_{j}, and for $0 \leq p \leq 2$,

$$
\begin{equation*}
\sum_{W \in \mathcal{W}_{j}} \operatorname{meas}(W)\left\|A_{s(W), W, j}\right\|_{\infty}^{p} \leq C_{d} 2^{p j} \operatorname{meas}\left(\Omega_{j}\right) . \tag{3.2}
\end{equation*}
$$

With this notation we need to show the inequality

$$
\begin{equation*}
\left\|\sum_{s, j} \sum_{\ell \geq 0} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=l-s}} \psi_{s} * K_{s} * A_{s, W, j}\right\|_{p} \leq C_{\epsilon} \sup _{s}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|S f\|_{p}, \tag{3.3}
\end{equation*}
$$

for any $\epsilon>0$ and $1<p \leq 2$. For each integer l in this sum, we split K_{s} into short range and long range pieces, $K_{s, \ell}^{s h}$ and $K_{s, \ell}^{l g}$. To define them, let

$$
\begin{aligned}
K_{s}(x)=2^{s d} H_{s}\left(2^{s} x\right) & =2^{s d} H_{s}\left(2^{s} x\right) \chi_{\left(\left|2^{s} x\right| \leq 2^{\ell}\right)}+2^{s d} H_{s}\left(2^{s} x\right) \chi_{\left(\left|2^{s} x\right|>2^{\ell}\right)} \\
& :=K_{s, \ell}^{s h}(x)+K_{s, \ell}^{l g}(x),
\end{aligned}
$$

where χ denotes the characteristic function.
Lemma 3.2. We have the following.
(1) For $1 \leq p \leq \infty$

$$
\begin{equation*}
\left\|K_{s, \ell}^{s h} * f\right\|_{p} \leq C\left\|H_{s}\right\|_{1}\|f\|_{p} \tag{3.4}
\end{equation*}
$$

(2) If $\epsilon>0$ then for $1 \leq p \leq \infty$

$$
\begin{equation*}
\left\|K_{s, \ell}^{l g} * f\right\|_{p} \leq C 2^{-\epsilon \ell}\left(\left\|H_{s}\right\|_{L^{1}[(1+|x|) \epsilon d x]}\right)\|f\|_{p} \tag{3.5}
\end{equation*}
$$

Proof. For (3.4), by scaling

$$
\left\|K_{s, \ell}^{s h} * f\right\|_{p} \leq C\left\|K_{s, \ell}^{s h}\right\|_{1}\|f\|_{p} \leq C\left\|H_{s} \chi_{\left(|x| \leq 2^{\ell}\right)}\right\|_{1}\|f\|_{p} .
$$

For (3.5), by scaling

$$
\left\|K_{s, \ell}^{l g} * f\right\|_{p} \leq C\left\|K_{s, \ell}^{l g}\right\|_{1}\|f\|_{p} \leq C\left\|H_{s} \chi_{\left(|x|>2^{\ell}\right)}\right\|_{1}\|f\|_{p}
$$

And so if $\epsilon>0$ then

$$
\left\|K_{s, \ell}^{l g} * f\right\|_{p} \leq C 2^{-\epsilon \ell}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|f\|_{p}
$$

Lemma 3.3 (Lemma 2.2 in [7]). Let $0<p_{0}<p_{1}<\infty$. Let $\left\{F_{j}\right\}_{j \in \mathbb{Z}}$ be a sequence of measurable functions on a measure space $\{\Omega, \mu\}$, and let $\left\{s_{j}\right\}$ be a sequence of nonnegative numbers. Assume that, for all j, the inequality

$$
\left\|F_{j}\right\|_{p_{v}}^{p_{v}} \leq M^{p_{v}} 2^{j p_{v}} s_{j}
$$

holds for $v=0$ and $v=1$. Then for every $p \in\left(p_{0}, p_{1}\right)$, there is a constant $C=C\left(p_{0}, p_{1}, p\right)$ such that

$$
\left\|\sum_{j} F_{j}\right\|_{p}^{p} \leq C^{p} M^{p} \sum_{j} 2^{j p} s_{j} .
$$

For the short range estimate, it suffices to show that

$$
\begin{equation*}
\left\|\sum_{s, j} \sum_{\ell \geq 0} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} \psi_{s} * K_{s, \ell}^{s h} * A_{s, W, j}\right\|_{\tau}^{\tau} \leq C^{\tau} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{1}\right)^{\tau}\|S f\|_{\tau}^{\tau} \tag{3.6}
\end{equation*}
$$

for $1 \leq \tau \leq 2$. If we have (3.6) then $\tau=p$ will give the desired result. To prove (3.6), by Lemma 3.3, it suffices to show that for fixed j, and for $1 \leq \tau \leq 2$,

$$
\begin{equation*}
\left\|\sum_{s} \sum_{\ell \geq 0} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} \psi_{s} * K_{s, \ell}^{s h} * A_{s, W, j}\right\|_{\tau}^{\tau} \leq C^{\tau} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{1}\right)^{\tau} \operatorname{meas}\left(\Omega_{j}\right) . \tag{3.7}
\end{equation*}
$$

If we show (3.7), then by Lemma 3.3 the left hand side of (3.6) is controlled by

$$
C^{\tau} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{1}\right)^{\tau} \sum_{j} 2^{j \tau} \operatorname{meas}\left(\Omega_{j}\right) \leq C^{\tau} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{1}\right)^{\tau}\|S f\|_{\tau}^{\tau}
$$

Now we prove (3.7). For $\tau=2$, note that
$\left\|\sum_{s} \sum_{\ell \geq 0} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} \psi_{s} * K_{s, \ell}^{s h} * A_{s, W, j}\right\|_{2}^{2}=\left\|\sum_{W \in \mathcal{W}_{j}} \sum_{s} \psi_{s} * K_{s, L(W)+s}^{s h} * A_{s, W, j}\right\|_{2}^{2}$.

For each fixed j, since $\sum_{s} \psi_{s} * K_{s, L(W)+s}^{s h} * A_{s, W, j}$ is supported in W^{*} and $W^{*}, W \in \mathcal{W}_{j}$, have bounded overlap, by (3.4) and (3.1),

The left hand side of $(3.7) \leq C^{2} \sum_{W \in \mathcal{W}_{j}}\left\|\sum_{s} \psi_{s} * K_{s, L(W)+s}^{s h} * A_{s, W, j}\right\|_{2}^{2}$

$$
\leq C^{2} \sum_{W \in \mathcal{W}_{j}} \sum_{s}\left\|K_{s, L(W)+s}^{s h} * A_{s, W, j}\right\|_{2}^{2}
$$

$$
\leq C^{2} \sum_{W \in \mathcal{W}_{j}} \sum_{s} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{1}\right)^{2}\left\|A_{s, W, j}\right\|_{2}^{2}
$$

$$
\leq C^{2} \sup _{s \in \mathbb{Z}}\left(\left\|H_{s}\right\|_{1}\right)^{2} 2^{2 j} \operatorname{meas}\left(\Omega_{j}\right) .
$$

Inequality (3.7) for $\tau<2$ follows from (3.7) for $\tau=2$ by Hölder's inequality. Here we use that the relevant expressions are supported in Ω_{j}^{*} and $\left|\Omega_{j}^{*}\right| \leq C_{d}\left|\Omega_{j}\right|$.

For the long range estimate, that is,

$$
\left\|\sum_{s, j}^{(3.8)} \sum_{\ell \geq 0} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} \psi_{s} * K_{s, l}^{l g} * A_{s, W, j}\right\|_{p} \leq C_{\epsilon} \sup _{s}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|S f\|_{p},
$$

for $\epsilon>0$ and $1<p \leq 2$, we use

$$
\begin{equation*}
\left\|\sum_{s} \psi_{s} * h_{s}\right\|_{\tau}^{\tau} \leq C\left(\sum_{s}\left\|h_{s}\right\|_{\tau}^{\tau}\right)^{1 / \tau}, \quad 1 \leq \tau \leq 2 . \tag{3.9}
\end{equation*}
$$

And so by Minkowski's inequality and (3.9), the left hand side of (3.8) is dominated by

$$
\begin{equation*}
\sum_{\ell \geq 0}\left(\sum_{s}\left\|\sum_{j} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} K_{s, \ell}^{l g} * A_{s, W, j}\right\|_{p}^{p}\right)^{1 / p} . \tag{3.10}
\end{equation*}
$$

For fixed ℓ, s, by (3.5), if $\epsilon>0$ then

$$
\left\|\sum_{j}^{(3.11)} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} K_{s, \ell^{l}}^{l g} * A_{s, W, j}\right\|_{p} \leq C 2^{-\epsilon \ell}\left\|H_{s}\right\|_{L^{1}[(1+|x|) \epsilon d x]}\left\|\sum_{j} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} A_{s, W, j}\right\|_{p} .
$$

For fixed ℓ, s, the functions $\sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} A_{s, W, j}, j \in \mathbb{Z}$, live on disjoint sets (since the sets $\bigcup_{Q \in \mathcal{Q}_{j}^{s}} Q, j \in \mathbb{Z}$, are disjoint). Hence
$\left\|\sum_{j} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} A_{s, W, j}\right\|_{p}^{p}=\sum_{j}\left\|\sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}} A_{s, W, j}\right\|_{p}^{p}=\sum_{j} \sum_{\substack{W \in \mathcal{W}_{j} \\ L(W)=\ell-s}}\left\|A_{s, W, j}\right\|_{p}^{p}$.
Therefore by (3.2)

$$
\begin{align*}
\sum_{s}\left\|\sum_{j} \sum_{\substack{W \in \mathcal{W}_{j} \\
L(W)=\ell-s}} A_{s, W, j}\right\|_{p}^{p} & \leq \sum_{j} \sum_{s} \sum_{\substack{W \in \mathcal{W}_{j} \\
L(W)=\ell-s}}\left\|A_{s, W, j}\right\|_{p}^{p} \tag{3.12}\\
& \leq \sum_{j} \sum_{W \in \mathcal{W}_{j}}\left\|A_{\ell-L(W), W, j}\right\|_{p}^{p} \\
& \leq \sum_{j} \sum_{W \in \mathcal{W}_{j}} \operatorname{meas}(W)\left\|A_{\ell-L(W), W, j}\right\|_{\infty}^{p} \\
& \leq C \sum_{j} 2^{j p} \operatorname{meas}\left(\Omega_{j}\right) \leq C\|S f\|_{p}^{p} \leq C\|f\|_{p}^{p}
\end{align*}
$$

By (3.11) and (3.12), it follows that the expression (3.10) is
$\leq \sum_{\ell>0} C 2^{-\ell \epsilon} \sup _{s}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|f\|_{p} \leq C_{\epsilon} \sup _{s}\left(\left\|H_{s}\right\|_{L^{1}\left[(1+|x|)^{\epsilon} d x\right]}\right)\|f\|_{p}$,
if $\epsilon>0$ and $1<p \leq 2$. And this completes the proof.

References

[1] Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of H^{1} with BMO on the bidisc, Ann. of Math. (2) 112(1) (1980), 179-201.
[2] Anthony Carbery, George Gasper, and Walter Trebels, Radial Fourier multipliers of $L^{p}\left(\mathbf{R}^{2}\right)$, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, Phys. Sci., 3254-3255.
[3] Henry Dappa, A Marcinkiewicz criterion for L^{p}-multipliers, Pacific J. Math. 111(1) (1984), 9-21.
[4] Gustavo Garrigós and Andreas Seeger, Characterizations of Hankel multipliers, Math. Ann. 342(1) (2008), 31-68.
[5] _ A note on maximal operators associated with Hankel multipliers, Rev. Un. Mat. Argentina 50(2) (2009), 137-148.
[6] Lars Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[7] Yaryong Heo, Fëdor Nazarov, and Andreas Seeger, Radial Fourier multipliers in high dimensions, Acta Math. 206(1) (2011), 55-92.
[8] Jaak Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130.
[9] Andreas Seeger, Remarks on singular convolution operators, Studia Math. 97(2) (1990), 91-114.
[10] Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983

Yaryong Heo
Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea.
E-mail: yaryong@korea.ac.kr

