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A NOTE ON FULLY IDEMPOTENT S-ACTS

Mohammad Roueentan∗ and Majid Ershad

Abstract. In this article we introduce the notion of fully idem-
potent acts and by this we give a characterization of commutative
monoids over which all cyclic right acts are injective.

1. Introduction and Preliminaries

Throughout this paper, S will denote a monoid. A right S-act AS (or
A) is a non-empty set A together with a function µ : A×S −→ A, called
the action of S, which is denoted by µ(a, s) = as such that a.1 = a and
a(st) = (as)t for each a ∈ A and s, t ∈ S. A subact B of an S-act A is
a subset of A such that bs ∈ B, for all b ∈ B, s ∈ S. A subact of the
S-act S is said to be a right ideal of the monoid S. A right S-act A is
called simple if it does not contain a proper subact.

For a right S-act A, an element θ in A is called a zero of A if θs = θ
for each s ∈ S. Moreover, Θ = {θ} is the one-element right S-act. A
right S-act A is called Θ-simple if it contains no subacts other than A
and one-element subact.

Let A and B be two right S-acts. A mapping f : A −→ B is called
an S-homomorphism if f(as) = f(a)s for all a ∈ A, s ∈ S. The set
all of S-homomorphims from A to B is denoted by Hom(A,B). If
f : A −→ B is an S-homomorphism, then f is called a monomorphism
(an epimorphism) if f is left (right) cancellable, i.e., if C is a right S-act
and h, k : C −→ A (h, k : B −→ C) are S-homomorphisms, then the
equality fk = fh (kf = hf) implies that k = h. If for S-homomorphisms
f : A −→ B and g : B −→ A, fg = 1BS

, then f is called a retraction
and B is called a retract of A.

A subactB of an S-actA is called essential inA if any S-homomorphism
g : A −→ C such that g|B is a monomorphism is itself a monomorphism.
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In this case A is called an essential extension of B. It is well-known that
an S-act A is said to be injective if for every monomorphism h : B −→ C
and every homomorphism f : B −→ A, there exists a homomorphism
g : C −→ A such that gh = f . Moreover, an extension A of an S-act
B is called an injective envelope of B if it is an essential extension of
B which is also injective. Note that injective envelopes of S-acts always
exist (see Corollary 3.1.23 of [1]).

Recall that a monoid S is said to be right self -injective if the right
S-act SS is injective (see Definition 4.1.7 of [1])

A right S-act P is said to be projective if for any epimorphism
f : A −→ B and any homomorphism g : P −→ B, there exists a
homomorphism h : P −→ A such that g=fh. For more information
about semigroups and acts see [1].

In this paper we introduce the notion of fully idempotent acts. This
leads to the study of the relation between these kinds of acts and other
classes of acts, such as injective and projective acts. A subact B of a
right S-act A is called idempotent if B =

⋃
f(B)

f∈Hom(A,B)

. Also, the right

S-act A is called fully idempotent if every subact of A is an idempotent.
We prove that the right S-act SS is fully idempotent if and only if for
every right ideal I of S, I2 = I. Also, by the notion of fully idempotent
acts we give a characterization of commutative monoids over which every
cyclic right act is injective.

2. Fully idempotent acts

Definition 2.1. Let A be a right S-act and B be a subact of A.
We say that B is an idempotent subact of A if B =

⋃
f(B)

f∈Hom(A,B)

. Also,

the right S-act A is called fully idempotent if every subact of A is an
idempotent.

We show that the right S-act SS is injective if and only if SS is an
idempotent subact of its injective envelope. Also, it is shown that over
a commutative monoid S, all right S-acts are fully idempotent if and
only if all cyclic right S-acts are injective. We need the following lemma,
which is used frequently in the sequel.

Lemma 2.2. Suppose S is a monoid and A is a right S-act. Then
the following statements are equivalent:

(i) A is fully idempotent.
(ii) For every a ∈ A, aS is an idempotent subact of A.
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(iii) For every a ∈ A, there exits a homomorphism ϕ : A −→ aS such
that a = ϕ(at) for some t ∈ S.

Proof. (i) =⇒ (ii) It is clear.
(ii) =⇒ (iii) Since for every a ∈ A, aS is an idempotent subact of A,

the result follows by Definition 2.1.
(iii) =⇒ (i) If B is a subact of A, then B =

⋃
bS

b∈B
and by assumption

B =
⋃
f(B)

f∈Hom(A,B)

. Thus B is an idempotent subact of A and A is fully

idempotent.

The following lemma includes some general properties of fully idem-
potent right S-acts.

Lemma 2.3. The following statements hold over a monoid S.
(i) If S contains a left zero and {Ai : i ∈ I} is a family of fully idempotent
right S-acts, then

∐
i∈I Ai is fully idempotent.

(ii) Every subact of a fully idempotent right S-act is fully idempotent.
(iii) A retract of a fully idempotent right S-act is fully idempotent.

Proof. (i) The proof is easy and will be omitted.
(ii) Suppose B is a subact of a fully idempotent S-act A. Since

A is fully idempotent, by Lemma 2.2, for every b ∈ B, there exists a
homomorphism ϕ : A −→ bS such that a = ϕ(bt) for some t ∈ S. Now
if we consider the restriction of ϕ to B, i.e. ϕ |B, then B would be fully
idempotent by Lemma 2.2.

(iii) Note that a retract of a right S-act A is isomorphic to a subact
of A and thus the result follows by part (ii).

By the following example we show that fully idempotent acts are not
preserved under product and coproduct.

Example 2.4. (i) Let S = (N, .) and P be the collection of prime
numbers. For every p ∈ P , (Zp,+), the group of congruence classes
modulo p, is a right S-act with multiplication an = an for every a ∈ Zp

and every n ∈ N. Clearly for every p ∈ P , (Zp,+) is a Θ-simple right
S-act and so by Lemma 2.2, it is a fully idempotent right S-act. Now,
if A = Πp∈PZp is fully idempotent, then by Lemma 2.2, there exists
an epimorphism f : A −→ (1, 1, ...)S. This implies that f(0, 0, ...) =
(1, 1, ...)m for some m ∈ N and hence (mn,mn, ..) = (m,m, ..) for each
n ∈ N. This means that mn ∼= m (mod p) for every p ∈ P and every
n ∈ N, which is a contradiction.
(ii) Let S be a regular monoid which has no left zero element and Θ be
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the one-element right S-act. Then SS and Θ are fully idempotent right
S-acts, but S t Θ is not fully idempotent. Otherwise, by Lemma 2.2,
there exists a homomorphism f : S tΘ −→ S, which implies that S has
a left zero element.

Recall that a monoid S is called left reversible if any two right ideals
of S have non-empty intersection (see Definition 1.3.18 of [1]).

Proposition 2.5. Suppose S is a monoid with a right zero and A
is a projective right S-act. Then A is injective if and only if A is an
idempotent subact of its injective envelope.

Proof. The necessity is clear. Conversely, suppose A =
∐

i∈I aiS and
E(A) is the injective envelope of A. Then by assumption for every
i ∈ I, ai = fi(ajsi) for some homomorphism fi : Ei = E(A) −→ A and
some si ∈ S. Define f :

∐
i∈I Ei −→ A by f(xi) = fi(xi) for every

xi ∈ Ei, i ∈ I. Clearly f is an epimorphism and by projectivity of A,
there exists a homomorphism h : A −→

∐
i∈I Ei such that f o h=1A.

Thus A is a retract of
∐

i∈I Ei. Since S is left reversible, by Proposition
3.1.13 of [1],

∐
i∈I Ei is injective and so A is injective.

By the following theorem we give a new characterization of right self-
injective monoids by the notion of fully idempotent acts.

Theorem 2.6. Suppose S is a monoid with a zero and E(S) is the
injective envelope of SS . The following statements are equivalent:

(i) SS is injective.
(ii) SS is an idempotent subact of E(S).
Moreover, if S is commutative, then the above statements are equivalent
to:

(iii) E(S) is projective.

Proof. (i) ⇐⇒ (ii) It is clear by the previous proposition.
(iii) =⇒ (i) By Theorem 3.17.8 of [1], E(S) ∼=

∐
i∈I eiS, where for

every i ∈ I, ei is an idempotent element of S. Since S ⊆ E(S) and
S is commutative ,we conclude that for some i ∈ I, ei = 1. Thus
if π : E(S) −→ S is the canonical projection, then clearly π is an
epimorphism and so SS is an idempotent subact of E(S). Now the
result follows by Proposition 2.5.

(i) =⇒ (iii) Since the right S-act SS is injective, S = E(S) and hence
E(S) is projective.

Recall that a right S-act A is regular if every cyclic right subact of
A is projective (see Corollary 3.19.3 of [1]).
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Proposition 2.7. Suppose S is a commutative monoid and A is a
fully idempotent right S-act. Then every cyclic subact of A is a retract of
A. In particular every projective fully idempotent right S-act is regular.

Proof. By Lemma 2.2, for every a ∈ A, there exists f : A −→ aS
such that a = f(a)s for some s ∈ S. Define g : aS −→ A by g(a) = as.
Clearly, g is a well-defined homomorphism and f o g=1. Thus aS is a
retract of A. Also, this implies that every projective fully idempotent
right S-act is regular.

Now we give a classification of monoids by the fully idempotent acts.

Lemma 2.8. Over a monoid S the following statements are equiva-
lent:

(i) SS is fully idempotent.
(ii) For every right ideal I of S, I2 = I.
(iii) For every principal right ideal I of S, I2 = I.
(iv) For every s ∈ S, there exist x, t ∈ S such that s = sxst.

Proof. (i) =⇒ (ii) Suppose I is a right ideal of S and i ∈ I. By
Lemma 2.2, i = f(it) where f : SS −→ iS is an S-homomorphism and
t ∈ S. Thus i = f(it) = f(1)(it) ∈ I2 because f(1), it ∈ I. Hence I ⊆ I2
and so I = I2.

(ii) =⇒ (iii) It is clear.
(iii) =⇒ (iv) For every s ∈ S, (sS)2 = sS and so s = sxst for some

s, t ∈ S.
(iv) =⇒ (i) Suppose s ∈ S. By assumption, s = sxst for some

s, t ∈ S. Define ϕ : S −→ sS by ϕ(z) = sxz for every z ∈ S. Clearly
ϕ is a well-defined homomorphism and ϕ(st) = sxst = s. Hence by
Lemma 2.2, SS is fully idempotent

Theorem 2.9. Over a commutative monoid S the following state-
ments are equivalent:

(i) All free right S-acts are fully idempotent.
(ii) All finitely generated free right S-acts are fully idempotent.
(iii) SS is fully idempotent.
(iv) All cyclic right S-acts are fully idempotent.
(v) S is a regular monoid.

Proof. (i) =⇒ (ii) It is clear.
(ii) =⇒ (iii) Since the right S-act SS is free, the result follows.
(iii) =⇒ (i) Suppose F is a free right S-act with the basis {ai}i∈I and

suppose a = ais is an element of F for some i ∈ I and s ∈ S. Define
f : F −→ aS by f(ajt) = aist for every j ∈ I and every t ∈ S. Clearly f
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is well-defined and f(ai) = ais. By Lemma 2.8, s = s2x for some x ∈ S.
Thus f(aisx) = ais

2x = ais and so a = f(a)x. Now by Lemma 2.2, F
is fully idempotent.

(iii) =⇒ (iv) Suppose A = aS is a cyclic right S-act and B = asS is
a cyclic subact of A for some s ∈ S. By Lemma 2.8, s = sxst for some
x, t ∈ S. Define g : aS −→ asS by g(a) = asx. Clearly g is well-defined
and g(a)st = a(sxst) = as. Thus by Lemma 2.2, A is fully idempotent.

(iv) =⇒ (iii) It is clear.
(iii) ⇐⇒ (v) It is obvious by commutativity of S.

Corollary 2.10. Over a commutative monoid S with a zero the
following statements are equivalent:

(i) All finitely generated right S-acts which satisfy condition (P) are fully
idempotent.

(ii) All finitely generated strongly flat right S-acts are fully idempotent.
(iii) All projective right S-acts are fully idempotent.
(iv) All finitely generated projective right S-acts are fully idempotent.
(v) S is a regular monoid.

Proof. (i) =⇒ (ii) It is clear.
(ii) =⇒ (v) Since SS is strongly flat, SS is fully idempotent and so it

is regular by the previous theorem.
(v) =⇒ (i) Suppose A is a finitely generated right S-act which satisfies

condition (P). By Proposition 3.13.14 of [1], A =
∐n

i=1 aiS for some
n ∈ N. If aS is a cyclic subact of A, then a = ajs for some j ∈ {1, 2, ..., n}
and some s ∈ S. By Lemma 2.8, s = sxst for some x, t ∈ S. Define
f : A −→ ajsS = aS by

(2.1) f(ai) =

{
ajsx; i = j,

θ; i 6= j,

where θ is a fixed zero element of aS. Clearly f is a well-defined homo-
morphism and f(ajst) = ajsxst = ajs. Hence a = f(at) and by Lemma
2.2, A is fully idempotent.

(iii) =⇒ (iv) It is clear.
(iv) =⇒ (v) By the previous theorem is obvious.
(v) =⇒ (iii) By a similar proof of (v) =⇒ (i) is clear.

Note that by Theorem 2.9 and Corollary 2.10, we can find many
examples of fully idempotent acts over a monoid S.

Lemma 2.11. Suppose A is a right S-act and B,C are two subacts
of A such that C ⊆ B. If C is an idempotent subact of A, then C is an
idempotent subact of B.
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Proof. Since C is an idempotent subact of A, by Definition 2.1, C =⋃
f(C)

f∈Hom(A,C)

. Let f̄ = f |B for every S-homomorphism f : A −→ C.

Thus C =
⋃
f̄(C)

f∈Hom(A,C)

. Now, we can easily see that C is an idempotent

subact of B.

By Lemma 2.11, we have the following result.

Corollary 2.12. Over a monoid S, all right S-acts are fully idem-
potent if and only if all injective right S-acts are fully idempotent.

In [2], Zhang et al, gave a characterization of monoids over which
every cyclic right act is injective. The next theorem gives a new charac-
terization of these monoids by the fully idempotent acts.

Theorem 2.13. Suppose S is a commutative monoid. Then the
following statements are equivalent:

(i) All right S-acts are fully idempotent.
(ii) All injective right S-acts are fully idempotent.
(iii) All cyclic right S-acts are injective.
(iv) SS is fully idempotent and factors of fully idempotent right S-acts
are fully idempotent. Moreover, if S contains a zero then the above
statements are equivalent to:

(v) All principally weakly flat right S-acts are fully idempotent.
(vi) All weakly flat right S-acts are fully idempotent.
(vii) All flat right S-acts are fully idempotent.

Proof. (i) =⇒ (ii) It is clear.
(ii) =⇒ (iii) holds by Proposition 2.7.
(iii) =⇒ (i) If A is a right S-act and aS is a cyclic subact of A, then

by assumption there exists a homomorphism f : A −→ aS such that
f(a) = a and so A is fully idempotent by Lemma 2.2.

(iv) =⇒ (i) Note that every right S-act is a homomorphic image of a
free right S-act. Now, the result follows by Theorem 2.9.

(i) =⇒ (iv) It is clear.
(i) =⇒ (v), (v) =⇒ (vi) and (vi) =⇒ (vii) are clear.
(vii)=⇒(i) By assumption and corollary 2.10, we deduce that S is

a regular monoid. It is well known that over a commutative regular
monoid S all acts are flat and so, by assumption, all right S-acts are
fully idempotent.

Remark. In part (ii) of the previous theorem, we can replace injec-
tivity with every property which is weaker than injectivity. Also, this
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theorem shows that factors of fully idempotent acts are not necessarily
fully idempotent.

Acknowledgment. The authors would like to thank the referees for
providing valuable comments and suggestions.

References

[1] M. Kilp, U. Knauer and A. V. Mikhalev, Monoids, Acts and Categories, With
Application to Wreath Product, Berlin; New York, 2000.

[2] X. Zhang, U. Knauer and Y. Chen, Classification of monoids by injectivities I.
C-injectivity, Semigroup Forum, 76 (2008), 169-176.

Mohammad Roueentan
Department of Mathematics, College of Science, Shiraz University,
Shiraz 71454, Iran.
E-mail: mrooeintan@shirazu.ac.ir, m.rooeintan@yahoo.com

Majid Ershad
Department of Mathematics, College of Science, Shiraz University,
Shiraz 71454, Iran.
E-mail: ershad@shirazu.ac.ir


