DOI QR코드

DOI QR Code

Integer Programming Model and Heuristic on the Guided Scrambling Encoding for Holographic Data Storage

홀로그래픽 저장장치에 대한 GS 인코딩의 정수계획법 모형 및 휴리스틱

  • 박태형 (숭실대학교 산업정보시스템공학과) ;
  • 이재진 (숭실대학교 정보통신전자공학부 정보저장및통신 연구실)
  • Received : 2013.07.18
  • Accepted : 2013.06.23
  • Published : 2013.08.30

Abstract

In Guided Scrambling (GS) encoding for the holographic storage, after scrambling augmented source word into codeword, the best codeword satisfying modulation constraint is determined. Modulation constraints considered in this paper are strength which is the minimum number of transition between '0' and '1' in each row and column of codeword array and the symbol balancedness of codeword array. In this paper, we show that GS encoding procedure can be formulated as an integer programming model and develop a fast neighborhood search heuristic for fast computation of control bits. In the simulation, we compared the performance of heuristic algorithm with the integer programming model for various array and control bit size combinations.

홀로그래픽 저장장치의 Guided Scrambling (GS) 인코딩에서는 소스비트에 제어비트를 추가하여 스크램블링된 코드워드에서 변조 제약식을 만족하는 최적의 코드를 선택한다. 본 연구에서는 GS 인코딩 과정을 선형식으로 수식화하여, 제어비트를 직접 계산하는 0-1 정수계획법 모형을 소개한다. 또한 정수계획법의 계산 복잡도를 줄이기 위해 제어비트를 결정하는 이웃탐색 휴리스틱 알고리즘을 개발한다. 개발된 모형은 다양한 코드 행렬 및 제어비트를 갖는 문제들에 적용하여 성능을 비교하였다.

Keywords

References

  1. L. Hesselink, S. S. Orlov, and M. C. Bashaw, "Holographic data storage systems," Proc. IEEE, vol. 92, no. 8, pp. 1231-1280, Aug. 2004. https://doi.org/10.1109/JPROC.2004.831212
  2. V. Vadde and B. V. K. V. Kumar, "Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage," Applied Optics, vol. 38, no. 20, pp. 4374-4386, July 1999. https://doi.org/10.1364/AO.38.004374
  3. A. Vardy, M. Blaum, P. H. Siegel, and G. T. Sincerbox, "Conservative arrays: multidimensional modulation codes for holographic recording," IEEE Trans. Inf. Theory, vol. 42, no. 1, pp. 227-230, Jan. 1996. https://doi.org/10.1109/18.481792
  4. R. Talyansky, T. Etzion, and R. M. Roth, "Efficient code constructions for certain two-dimensional constraints," IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 794-799, Mar. 1999. https://doi.org/10.1109/18.749031
  5. K. A. S. Immink, Codes for Mass Data Storage Systems, Shannon Foundation Publishers, 1999.
  6. I. J. Fair, W. D. Grover, W. A. Krzymien, and R. I. MacDonald, "Guided scrambling: a new line coding technique for high bit rate fiber optic transmission systems," IEEE Trans. Commun., vol. 39, no. 2, pp. 289-297, Feb. 1991. https://doi.org/10.1109/26.76466
  7. W. Y. H. Wilson, K. A. S. Immink, X. B. Xi, and C. T. Chong, "An efficient coding technique for holographic storage with the method of guided scrambling," Proc. SPIE, vol. 4090, pp. 191-196, Sep. 2000.
  8. N. Y. Kim, J. Lee, Y. Hong, and J. Lee, "Optimal number of control bits in the guided scrambling method for holographic data storage," Japanese J. Applied Physics, vol. 44, pp. 3449-3452, May 2005. https://doi.org/10.1143/JJAP.44.3449
  9. J. Lee and J. Lee, "New DC-suppression method of modulation codes for high density optical recording systems," J. KICS, vol. 27, no. 1A, pp. 13-17, Jan. 2002.
  10. C.-L. Wang, Y. Ouyang, and F.-H. Huang, "A low-complexity peak-to-average power ratio reduction technique for OFDM systems using guided scrambling coding," in Proc. IEEE VTC 2007, pp. 2837-2840, Dublin, Ireland, Apr. 2007.
  11. R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL, Scientific Press, 1993.
  12. IBM, IBM ILOG CPLEX 12.4 User's Manual, 2012.