References
- B. Scrosati, 'Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells', Chem. Rec. 5, 286 (2005). https://doi.org/10.1002/tcr.20054
- A. Gotcher, 'Nanostructured Electrodes', Adv. Mater. Process. 163, 32 (2005).
- 박정기 외 14인, 리튬이차전지의 원리 및 응용, 우명찬, p28-p83, 홍릉과학출판사, 서울시 강북구 인수동 455-60 (2010).
-
Anthony W. Moses, Harry G. Garcia Flores, Jong-Gyu Kim and Marjorie A. Langell, 'Surface properties of
$LiCoO_{2}$ ,$LiNiO_{2}$ and$LiNi_{1-x}CoxO_{2}$ ', Appl. Surf. Sci. 253, 4782 (2006). -
I. Nakai et al., 'X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the
$LiCoO_{2}$ and$LiNiO_{2}$ systems', J. Power. Sources. 68, 536 (1997). https://doi.org/10.1016/S0378-7753(97)02598-6 -
P. Kalyani and N. Kalaiselvi, 'Various aspects of
$LiNiO_{2}$ : A review', Sci. Tech. Adv. Mat. 6, 689 (2005). https://doi.org/10.1016/j.stam.2005.06.001 -
Y. S. Lee, Y. K. Sun and K. S. Nahm, 'Synthesis and characterization of
$LiNiO_{2}$ cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries', Solid State Ionics 118, 159 (1999). https://doi.org/10.1016/S0167-2738(98)00438-X -
Tsutomu Ohzuku, Atsushi Ueda and Masatoshi Nagayama, 'Electrochemistry and structural chemistry of
$LiNiO_{2}$ (R3m) for 4 Volt Secondary Lithium Cells', J. Electrochem. Soc. 140, 1862 (1993). https://doi.org/10.1149/1.2220730 -
W. Ebner, D. Fouchard and L. Xie, 'The
$LiNiO_{2}$ / carbon lithium-ion battery', Solid State Ionics 69, 238 (1994). https://doi.org/10.1016/0167-2738(94)90413-8 -
G. X. Wang et al., 'Synthesis and characterization of
$LiNiO_{2}$ compounds as cathodes for rechargeable lithium batteries', J. Power. Sources 76, 141 (1998). https://doi.org/10.1016/S0378-7753(98)00153-0 -
C. Delmas et al., 'On the behavior of the
$Li_{x}NiO_{2}$ systems: an electrochemical and structural overview', J. Power Sources 68, 120 (1997). https://doi.org/10.1016/S0378-7753(97)02664-5 -
Liyun Hu et al., 'Ab initio studies on the stability and electronic structure of
$LiCoO_{2}$ (003) surfaces', Phys. Rev. B 71, 125433 (2005). https://doi.org/10.1103/PhysRevB.71.125433 -
Yongsen Kim, Hyndeok Lee and Shinhoo Kang, 'Firstprinciples and experimental investigation of the morphology of layer-structured
$LiNiO_{2}$ and$LiCoO_{2}$ ', J. Mater. Chem., 22, 12874 (2012). https://doi.org/10.1039/c2jm31145c - P. W. M. Jacobs, Yu. F. Zhukovskii, Yu. Mastrikov and Yu. N. Shunin, 'Bulk and surface properties of metallic aluminum: DFT simulation', Computer Modeling & New Technologies 6, 7 (2002).
- 박정기 외 14인, 리튬이차전지의 원리 및 응용, 우명찬, p266-p301, 홍릉과학출판사, 서울시 강북구 인수동 455-60 (2010).
- Kang Xu, 'Nonaqueous Liquid Electrolytes for Lithium- Based Rechargeable Batteries', Chem. Rev. 104, 4303 (2004). https://doi.org/10.1021/cr030203g
-
D. Aurbach et al., 'The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into
$Li_{x}MO_{y}$ Host Materials (M = Ni, Mn)', J. Electrochem. Soc. 147, 1322 (2000). https://doi.org/10.1149/1.1393357 - Ilias Belharouak et al., LITHIUM ION BATTERIES NEW DEVELOPMENTS, p101-p172, InTech, Janeza Tridine 9, 51000 Rijeka, Croatia (2010).
- K. Edstrom, T. Gustafsson and J. O. Thomas, 'The cathodeelectrolyte interface in the Li-ion battery', Electrochim. Acta. 50, 397 (2004). https://doi.org/10.1016/j.electacta.2004.03.049
- Pallavi Verma, Pascal Maire and Petr Novak, 'A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries', Electrochim. Acta. 55, 6332 (2010). https://doi.org/10.1016/j.electacta.2010.05.072
- P. Hohenberg and W. Kohn, 'Inhomogeneous Electron Gas', Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
- W. Kohn and L. J. Sham, 'Self-Consistent Equations Including Exchange and Correlation Effects', Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
- W. Kohn, 'An easy on condensed matter physics in the twentieth century', Rev. Mod. Phys. 71, S59 (1999). https://doi.org/10.1103/RevModPhys.71.S59
- P. E. Blchl, 'Projector augmented-wave method', Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J. P. Perdew et al., 'Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation', Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671
- J. P. Perdew, K. Burke, M. Ernzerhof, 'Generalized Gradient Approximation Made Simple', Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse and J. Furthmuller, 'Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set', Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse and J. Furthmuller, 'Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set', Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- D. Vanderbilt, 'Soft self-consistent pseudopotentials in a generalized eigenvalue formalism', Phys. Rev. B 41, 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
- G. Kresse and J. Hafner, 'Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements', J. Phys.: Condens. Matter 6, 8245 (1994). https://doi.org/10.1088/0953-8984/6/40/015
-
L. D. Dyer, B. S. Borie and G. P. Smith, 'Alkali Metal- Nickel Oxides of the Type
$MNiO_{2}$ ', J. Am. Chem. Soc. 76, 1499 (1954). https://doi.org/10.1021/ja01635a012 - H. J. Monkhorst and J. D. Pack, 'Special points for Brillouin-zone integrations', Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188