DOI QR코드

DOI QR Code

고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent

  • 유정이 ((주)삼성 SDI 중앙 연구소) ;
  • 신우철 ((주)삼성 SDI 중앙 연구소) ;
  • 이병곤 ((주)삼성 SDI 중앙 연구소)
  • 투고 : 2013.07.26
  • 심사 : 2013.08.12
  • 발행 : 2013.08.31

초록

$Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) 나노 복합체는 높은 이론 용량을 가지고 있어 전기 자동차용 2차 전지 활물질 재료로 많은 연구가 진행되고 있다. 하지만 $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)로부터 250 mAh/g 이상의 용량을 구현하기 위해서는 4.4 V 이상의 구동전압이 필요하며, 이러한 높은 구동 전압은 전지의 수명 및 고온 방치 특성의 저해 요소로 작용하고 있다. 본 연구에서는 이러한 문제점을 개선하기 위해서 FEC (Fluoroethylene carbonate), 플루오로알킬 에테르, $LiPF_6$가 주성분인 신규 전해액(F-based EL)을 설계하였다. F-based EL은 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD) 대비 안정한 SEI를 형성하며, 산화 안정성이 뛰어나 $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite 셀의 수명 및 방치 중 가스 저감에 효과가 있음을 확인할 수 있었다.

$Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

키워드

참고문헌

  1. Y. Qin, Z. Chen, W. Lu and K. Amine, 'Electrolyte additive to improve performance of $MCMB/LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}$ Li-ion cell', J. Power Sources, 195, 6888-6892 (2010). https://doi.org/10.1016/j.jpowsour.2010.04.040
  2. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy Environ. Sci. 4, 3243- 3262 (2011). https://doi.org/10.1039/c1ee01598b
  3. H. Kitaura, A. Hayashi, K. Tadanaga and M. Tatsumisago, 'Electrochemical performance of all-solidstate lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes', Electrochimica Acta, 55, 8821-8828 (2010). https://doi.org/10.1016/j.electacta.2010.07.066
  4. Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak and K. Amine, 'High-energy cathode material for long-life and safe lithium batteries', Nature Materials, 8, 320-324 (2009). https://doi.org/10.1038/nmat2418
  5. H. Liu, Y. Yang and J. Zhang, 'Reaction mechanism and kinetics of lithium ion battery cathode material $LiNiO_{2}$ with $CO_{2}$', J. Power Sources, 173, 556-561 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.083
  6. R. Kanno, 'Secondary batteries-lithium rechargeable systems-lithium-ion positive electrode: lithium nickel oxide', Encyclopedia of Electrochemical Power Sources, 297-306 (2009).
  7. L. Baggetto, N. J. Dudney and G. M. Veith, 'Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS', Electrochimica Acta, 90, 135-147 (2013). https://doi.org/10.1016/j.electacta.2012.11.120
  8. J. Yang, X. Zhang, Z. Zhu, F. Cheng and J. Chen, 'Ordered spinel $LiNi_{0.5}Mn_{1.5}O_{4}$ nanorods for high-rate lithium-ion batteries', J. Electroanalytical Chemistry, 688, 113-117 (2013). https://doi.org/10.1016/j.jelechem.2012.09.042
  9. O. Toprakci, H. A.K. Toprakci, Y. Li, L. Ji, L. Xue, H. Lee, S. Zhang and X. Zhang, 'Synthesis and characterization of $xLi_{2}MnO_{3}{\cdot}(1x)LiMn_{1/3}Ni_{1/3}Co_{1/3}O_{2}$ composite cathode materials for rechargeable lithium-ion batteries', J. Power Sources, 241, 522-528 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.155
  10. J. Li, S. Jeong, R. Kloepsch, M. Winter and S. Passerini, 'Improved electrochemical performance of $LiMO_{2}$ (M=Mn, Ni, Co)-$Li_{2}MnO_{3}$ cathode materials in ionic liquid-based electrolyte', J. Power Sources, 239, 490-495 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.015
  11. S. F. Amalraj, B. Markovsky, D. Sharon, M. Talianker, E. Zinigrad, R. Persky, O. Haik, J. Grinblat, J. Lampert, M. Schulz-Dobrick, A. Garsuch, L. Burlaka and D. Aurbach, 'Study of the electrochemical behavior of the "inactive" $Li_{2}MnO_{3}$', Electrochimica Acta, 78, 32-39 (2012). https://doi.org/10.1016/j.electacta.2012.05.144
  12. N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim and S.-S. Kim, 'Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode', J. Power Sources, 161, 1254-1259 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.049
  13. S. Dalavi, P. Guduru and B. L. Lucht, 'Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes', J. Electrochem. Soc., 159, A642-A646 (2012). https://doi.org/10.1149/2.076205jes
  14. I. A. Profatilova, S.-S. Kim and N.-S. Choi, 'Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate', Electrochimica Acta, 54, 4445-4450 (2009). https://doi.org/10.1016/j.electacta.2009.03.032
  15. G. Nagasubramanian and C. J. Orendorff, 'Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable', J. Power Sources, 196, 8604-8609 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.078
  16. N. Ohmi, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa and H. Aoyama, 'Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium ion batteries', J. Power Sources, 221, 6-13 (2013). https://doi.org/10.1016/j.jpowsour.2012.07.121
  17. M. S. Ding, K. Xu and T. R. Jow, 'Effects of tris(2,2,2- trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of $LiPF_{6}$ in EC-PC-EMC of 3:3:4 weight ratios', J. Electrochem. Soc. 149, A1489-A1498 (2002). https://doi.org/10.1149/1.1513556
  18. K. Xu, M. S. Ding, S. Zhang, J. L. Allen, 'Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries: I. physical and electrochemical properties', J. Electrochem. Soc. 150, A161-A169 (2003). https://doi.org/10.1149/1.1533040
  19. Y. Abu-Lebdeh and I. Davidson, 'High-voltage electrolytes based on adiponitrile for Li-ion batteries', J. Electrochem. Soc. 156, A60-A65 (2009). https://doi.org/10.1149/1.3023084
  20. M. Kunduraci and G.G. Amatucci, 'Synthesis and characterization of nanostructured 4.7 V $Li_{x}Mn_{1.5}Ni_{0.5}O_{4}$ spinels for high-power lithium-ion batteries', J. Electrochem. Soc. 153, A1345-A1352 (2006). https://doi.org/10.1149/1.2198110
  21. H. Nakai, T. Kubota, A. Kita and A. Kawashima, 'Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes', J. Electrochem. Soc. 158, A798-A801 (2011). https://doi.org/10.1149/1.3589300
  22. S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries', J. Power Sources, 162, 1379-1394 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.074

피인용 문헌

  1. Substituted Dioxaphosphinane as an Electrolyte Additive for High Voltage Lithium-Ion Cells with Overlithiated Layered Oxide vol.161, pp.4, 2014, https://doi.org/10.1149/2.100404jes