DOI QR코드

DOI QR Code

RDPS가 랜덤하게 분포하는 분산 제어 광전송 링크에서 전체 전송 거리에 따른 유효 전체 잉여 분산

Effective Net Residual Dispersion Depending on Total Transmission Length in Optical Transmission Links with a Randomly Distributed RDPS

  • 이성렬 (목포해양대학교 해양정보통신공학과)
  • Lee, Seong-Real (Dept. of Marine Inform. & Comm. Eng., Mokpo National Maritime University)
  • 투고 : 2013.06.24
  • 심사 : 2013.08.30
  • 발행 : 2013.08.30

초록

분산 제어 (DM; dispersion management)와 광 위상 공액 (optical phase conjugation)이 적용된 파장 다중 (WDM; wavelength division multiplexing) 시스템의 유연한 구성을 위하여 중계 구간 당 잉여 분산 (RDPS; residual dispersion per span)이 랜덤하게 분포하는 전송 링크에서 전체 전송 거리에 따른 설계 기준을 도출하였다. 설계기준 분석에 사용된 DM 파라미터는 유효 전체 잉여 분산 (NRD; net residual dispersion)과 유효 입사 전력이다. 단일 모드 광섬유 (SMF; single mode fiber) 기준 전체 전송 거리가 1,000 km 이하인 링크에 랜덤 분포의 RDPS가 적용되는 경우 일정 분포에 비해 시스템 성능이 크게 차이나지 않아 유연한 네트워크 구성이 가능하고, 넓은 범위에 걸쳐 있는 WDM 채널에 대해 하나의 값이 아닌 폭넓은 NRD를 링크에 적용할 수 있다는 것을 확인하였다.

The design rule depending on total transmission length is induced in the optical links with residual dispersion per span (RDPS) of the random distribution, which is adopted for implementing the flexible systems of wavelength division multiplexing (WDM) transmission with dispersion management (DM) and optical phase conjugation. DM parameters used for the analysis of the design rule are the effective net residual dispersion (NRD) and the effective launch power. It is confirmed that the flexible optical network configuration with the total transmission length lower than 1,000 km is possible, because the system performance difference between the randomly distribution and the uniform distribution of RDPS is small. And, in the optical links with the randomly distributed RDPS, the wide NRD can be applied for transmitting WDM channels of the relatively wide launch power.

키워드

참고문헌

  1. G. P. Agrawal, Nonlinear fiber optics, Academic Press, 2001.
  2. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission," Opt. Lett., Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  3. X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," J. Lightwave Technol., Vol. 24, No. 5, pp. 2038- 2044, 2006. https://doi.org/10.1109/JLT.2006.872278
  4. J. D. Ania-Castañon, and S. K. Turitsyn, "Noise and gain optimization in bi-directionally pumped dispersion compensating amplifier modules," Opt. Commun., Vol. 224, No. 1-3, pp. 107-111, 2003. https://doi.org/10.1016/S0030-4018(03)01721-8
  5. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation", J. Lightwave Technol., Vol. 14, No. 3, pp 243-248, 1996. https://doi.org/10.1109/50.485581
  6. X. Xiao et al., "Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry," Opt. Commun., Vol. 265, No. 1, pp. 326-330, 2006. https://doi.org/10.1016/j.optcom.2006.03.007
  7. S. R. Lee, "Dispersion managed optical transmission links with optimized optical phase conjugator", International Journal of KIMICS, Vol. 7, No. 3, pp. 372-376, 2009.
  8. S. R. Lee, S. E. Cho, "NRZ versus RZ modulation format in lumped dispersion managed systems", J. The Korea Institute of Maritime Information & Communication Sciences, Vol. 12, No. 2, pp. 327- 335, 2008.
  9. S. R. Lee, "Performance improvement of WDM channels using inline dispersion management in transmission links with OPC placed at various position", J.Korea Navigation Institut, Vol. 14, No. 5, pp. 668-676, 2010.
  10. S. R. Lee, "Performance improvement of WDM signals through precompensation and postcompensation in dispersion managed optical transmission links with artificial distribution of single mode fiber length and RDPS", J. The Korea Institute of Information & Communication Sciences, Vol. 16, No. 10, pp. 2293-2302, 2012. https://doi.org/10.6109/jkiice.2012.16.10.2293