DOI QR코드

DOI QR Code

Microstructures and Electrical Properties of (Na,K)NbO3-Based Piezoceramics Sintered with Glass Frit

유리 분말과 함께 소결한 (Na,K)NbO3계 압전체의 미세구조 및 전기적 특성

  • Pi, Ji-Hee (Department of Materials Science and Engineering, ReSEM, Korea National University of Transportation) ;
  • Kweon, Soon-Yong (Department of Materials Science and Engineering, ReSEM, Korea National University of Transportation)
  • 피지희 (한국교통대학교 신소재공학과, 친환경에너지 부품소재센터) ;
  • 권순용 (한국교통대학교 신소재공학과, 친환경에너지 부품소재센터)
  • Received : 2013.07.19
  • Accepted : 2013.08.24
  • Published : 2013.09.01

Abstract

$(Na,K)NbO_3$-based piezoelectric ceramics were synthesized by a liquid phase sintering method with a selected glass frit. The effects of the content of the glass frit and the sintering temperature on the microstructure and the electrical properties of the samples were investigated. With the 0.1 wt% of glass frit content, $(Na_{0.52}K_{0.44}Li_{0.06})(Nb_{0.84}Ta_{0.10}Sb_{0.06})O_3$ (NKL-NTS) ceramics showed the maximum values of the relative density (99.1%) and the electro-mechanical coupling factor ($k_p$: 0.32) at the sintering temperature of $1,050^{\circ}C$. It might mean that a liquid phase sintering with a suitable glass frit having the lower flow temperature could improve the relative density and the piezoelectric properties.

Keywords

References

  1. http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive.
  2. M. D. Maeder, A Damjanvic, and N. Setter, J. Electroceram., 13, 385 (2004). https://doi.org/10.1007/s10832-004-5130-y
  3. L. E. Cross, Nature, 432, 24 (2004). https://doi.org/10.1038/nature03142
  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  5. H. Watanabe, T. Kimura, and Y. Yamaguchi, J. Am. Ceram. Soc., 74, 139 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07309.x
  6. B. Brahmaroutu, G. L. Messing, S. Trolier-Mckinstry, and U. Selvaraj, Proc 10th IEEE Int. Symp. on Applications of Ferroelectrics, (eds. B. Kulwicki, A. Amin, and A. Safari) Institute of Electrical and Electronic Engineers (IEEE), (Piscataway. NJ, 1996) p. 883.
  7. J. A. Horn, S. C. Zhang, U. Selvaraj, G. L. Messing, and S. Trolier-Mckinstry, J. Am. Ceram. Soc., 82, 921 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01854.x
  8. T. Tani, J. Korean Phys. Soc., 32, S1217 (1998).
  9. T. Takeuchi, T. Tani, and Y. Satio, Jpn. J. Appl. Phys., 38, 5553 (1999). https://doi.org/10.1143/JJAP.38.5553
  10. T. Sugawara, M. Shimizu, T. Kimura, K. Takatori, and T. Tani, Ceram. Trans., 136, 389 (2003).
  11. S. H. Lee, S. D. Baek, D. H. Lee, S. G. Lee, and Y. H. Lee, J. KIEEME, 24, 636 (2011).
  12. K. S. Lee and J. H. Yoo, J. KIEEME, 24, 728 (2011).
  13. H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee, and H. W. Kang, J. Am. Ceram. Soc., 91, 2374 (2008). https://doi.org/10.1111/j.1551-2916.2008.02408.x
  14. W. J. Lee, Ceramics International, 31, 521 (2005). https://doi.org/10.1016/j.ceramint.2004.06.009
  15. J. H. Kim, H. Y. Koo, Y. N. Ko, and Y. C. Kang, J. Alloy. Comp., 497, 259 (2010). https://doi.org/10.1016/j.jallcom.2010.03.022