DOI QR코드

DOI QR Code

비동일 노드들과 연결정보 제약이 없는 복잡동적 네트워크의 동기화

Synchronization of a Complex Dynamical Network with nonidentical Node and Free Coupling Strength

  • 윤한오 (구미대학교 컴퓨터정보전자과)
  • Yun, Han-O (Dept. of Computer Information & Electronics, Gumi University)
  • 투고 : 2013.05.03
  • 발행 : 2013.08.15

초록

본 논문은 동일하지 않는 노드들을 갖는 복잡동적 네트워크의 동기화문제를 고려한다. 이 문제에서 타켓 노드는 별도의 독립노드 대신에 네트워크내의 한 노드를 택하였다. 더욱이 본 논문의 동기화기법에서는 기존에 존재하는 연결행렬의 정보나 부가적인 조건을 필요하지 않는 장점이 있다. 리아프노프 안정성기법에 의거하여 타켓 노드와 다른 노드들 사이의 동기화를 위한 새로운 적응제어기를 위한 조건을 유도한다. 마지막으로 제안된 기법의 효율성을 보이기 위하여 수치적인 예제를 제시한다.

This paper considers synchronization problem of a complex dynamical network with nonidentical nodes. For the problem, the target node is chosen as one of nodes in the complex network instead of an isolate node. Moreover, our synchronization scheme does not need additional conditions and information of coupling matrix comparing with existing works. Based on Lyapunov stability theory, a design criterion for a novel adaptive feedback controller for the synchronization between the target node and another nodes of the complex network is proposed. Finally, the proposed method is applied to a numerical example in orther to show the effectiveness of our results.

키워드

참고문헌

  1. S.H. Strogatz, "Exploring complex networks," Nature 410, pp.268-276, 2001. https://doi.org/10.1038/35065725
  2. A.L. Barabasi, R.Albert, "Emergence of scaling in random networks," Science 286, pp.509-512, 1999. https://doi.org/10.1126/science.286.5439.509
  3. S.N. Dorogovtesev, J.F.F. Mendes, " Evolution of network," Advances in Physics 51, pp.1079-1187,2002. https://doi.org/10.1080/00018730110112519
  4. M.E.J.Newman, "The structure and function of complex networks," SIAM Review 45 pp.167-256, 2003. https://doi.org/10.1137/S003614450342480
  5. R.Albert, A.L. Barebasi, "Statistical mechanics of networks," Rev Mod. Phys.74, pp.47-97, 2002. https://doi.org/10.1103/RevModPhys.74.47
  6. D.J.Watts, S.H.Strogatz, "Collective dynamics of 'small-world' networks," Nature 393, pp.440-442, 1998. https://doi.org/10.1038/30918
  7. J. Zhou, J.A. Lu, J. Lu, "Pinning adaptive synchronization of a general complex dynamical network," Automatica 44, pp.996-1003, 2008. https://doi.org/10.1016/j.automatica.2007.08.016
  8. W. Yu, G. Chen, J. L, "On pinning synchronization of complex dynamical networks," Automatica 45, pp.429-435, 2009. https://doi.org/10.1016/j.automatica.2008.07.016
  9. L. Xiang, J.J.H. Zhu, "On pinning synchronization of general coupled networks," Nonlinear Dynamics, 2010.
  10. S. Cai, Q. He, J. Hao, Z. Liu, "Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes, Physics Letters A 374, pp.2539-2550, 2010. https://doi.org/10.1016/j.physleta.2010.04.023
  11. Q. Song, J. Cao, F. Liu, "Synchronization of complex dynamical networks with nonidentical nodes," Physics Letters A 374, pp.544-551, 2010. https://doi.org/10.1016/j.physleta.2009.11.032
  12. G. Solis-Perales, E. Ruiz-Velazquez, D. Valle-Rodriguez, "Synchronization in complex networks with distinct chaotic nodes," Commun. Nonlinear Sci. Numer. Simulat. 14, pp.2528-2535, 2009. https://doi.org/10.1016/j.cnsns.2008.09.019
  13. L. Wang, H.P. Dai, H. Dong, Y.Y.Cao, Y.X. Sun, "Adaptive synchronization of weighted complex dynamical networks through pinning," Eur. Phys. J. B 61, pp.335-342, 2008. https://doi.org/10.1140/epjb/e2008-00081-5
  14. H. Tanga, L. Chena, J. Lua, C.K. Tse, "Adaptive synchronization between two complex networks with nonidentical topological structures," Physica A 387, pp.5623-5630, 2008. https://doi.org/10.1016/j.physa.2008.05.047
  15. S. Zheng, Q. Bi, G. Cai, "Adaptive projective synchronization in complex networks with time-varying coupling delay," Physics Letters A 373, pp.1553-1559, 2009. https://doi.org/10.1016/j.physleta.2009.03.001
  16. D. Xu, Z. Su, "Synchronization criterions and pinning control of general complex networks with time delay," Applied Mathematics and Computation 215, pp.1593-1608, 2009. https://doi.org/10.1016/j.amc.2009.07.015
  17. E.N. Lorenz, "Deterministic nonperiodic flow," J. Atmos. Sci. 20, pp.130-141, 1963. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  18. G. Chen, T. Ueta, Another chaotic attractor, Int. J. Bifurcation and Chaos 9, pp.1465-1466, 1999. https://doi.org/10.1142/S0218127499001024
  19. J. Lu, G. Chen, "A new chaotic attractor coined," Int. J. Bifurcation and Chaos 12, pp.659-661, 2002. https://doi.org/10.1142/S0218127402004620
  20. H.K. Chen, C.I. Lee, "Anti-control of chaos in rigid body motion, Chaos, Solitons Fractals 21, pp.957-965, 2004. https://doi.org/10.1016/j.chaos.2003.12.034
  21. R. Genesio, A Tesi, "A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems," Automatica 28, pp.531-548, 1992. https://doi.org/10.1016/0005-1098(92)90177-H