DOI QR코드

DOI QR Code

다양한 틈새 물질을 포함하는 AN계열 화약의 초음속 화염 전파 특성 연구

Study of Supersonic Flame Acceleration within AN-based High Explosive Containing Various Gap Materials

  • Lee, Jinwook (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2012.05.26
  • 심사 : 2013.05.21
  • 발행 : 2013.08.01

초록

수치해석을 통하여 고에너지물질의 초음속 화염 전파에 대한 틈새(gap)의 효과를 연구하였다. 특성음향임피던스(characteristic acoustic impedance) 이론을 적용하여, 고폭약 및 고체추진제의 틈새(gap) 실험과 관계된 반사와 투과 현상들에 대한 이해를 추구하였다. 한편, 여러 개의 틈새(gap)가 위치하고 있는 화약의 한 끝에 초음속 화염이 발생되도록 하여, 여러 틈새(gap)에 전파되나가는 연속적인 화염에 대한 이해를 시도하였다. 이러한 고차원 다물질 해석을 통해, 충격하중 하에서의 고에너지 물질의 반응 특성이 물질 간격 동특성에 의하여 어떠한 영향을 받는지 이해할 수 있다.

We study the gap effect on detonating high explosives using numerical simulation. The characteristic acoustic impedance theory is applied to understand the reflection and transmission phenomena associated with gap test of high explosives and solid propellants. A block of charge with embedded multiple gaps is detonated at one end to understand the ensuing detonation propagation through pores and non uniformity of the tested material. A high-order multimaterial simulation provides a meaningful insight into how material interface dynamics affect the ignition response of energetic materials under a shock loading.

키워드

참고문헌

  1. Kim, K., Yoh, J.J., "A particle level-set based Eulerian method for multi-material detonation simulation of high explosive and metal confinements," Proceedings of the Combustion Institute, Vol. 34, pp. 2025-2033, 2013.
  2. Gato, C., "Detonation-driven fracture in thin shell structures: Numerical studies," Applied Mathematical Modelling, Vol. 34, pp. 3741-3754, 2010. https://doi.org/10.1016/j.apm.2010.02.011
  3. Le, J., Rong, J., "Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion," European Journal of Mechanics B/Fluids, Vol. 32, pp. 59-69, 2012. https://doi.org/10.1016/j.euromechflu.2011.09.009
  4. Lee, J., Yoh, J., "Controlling of detonation strength through inserted gaps in multi-material numerical simulation," KSAS Spring Conference, pp. 907-912, 2012.
  5. Wolfson, M.G., "The MRL small scale gap test for the assessment of shock sensitivity of high explosives," Department of Defence, Report, MRL-R-896.
  6. Enright, D., Fedkiw, R.P., Ferziger, J., Mitchell, I., "A hybrid particle level set method for improved interface capturing," Journal of Computational Physics, Vol. 183, pp. 83-116, 2002. https://doi.org/10.1006/jcph.2002.7166
  7. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S., "A Non-oscillatory Eulerian approach to interfaces in multimaterial flows," Journal of Computational Physics, Vol. 152, pp. 457-492, 1999. https://doi.org/10.1006/jcph.1999.6236
  8. Rienstra, S.W., Hirschberg, A., "An Introduction to Acoustics," Eindhoven University of Technology, pp. 65-66, 2012.

피인용 문헌

  1. A Study on Shock-induced Detonation in Gap Test vol.20, pp.2, 2016, https://doi.org/10.6108/KSPE.2016.20.2.075