DOI QR코드

DOI QR Code

Effects of Feeding Increasing Proportions of Corn Grain on Concentration of Lipopolysaccharide in the Rumen Fluid and the Subsequent Alterations in Immune Responses in Goats

  • Huo, Wenjie (Laboratory of Gastrointestinal Microbiology, College of Animal Sciences and Technology, Nanjing Agricultural University) ;
  • Zhu, Weiyun (Laboratory of Gastrointestinal Microbiology, College of Animal Sciences and Technology, Nanjing Agricultural University) ;
  • Mao, Shengyong (Laboratory of Gastrointestinal Microbiology, College of Animal Sciences and Technology, Nanjing Agricultural University)
  • Received : 2013.03.08
  • Accepted : 2013.06.03
  • Published : 2013.10.01

Abstract

This study was conducted to investigate the effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide (LPS) in the rumen fluid and the subsequent alterations in immune responses as reflected by plasma concentrations of serum amyloid A (SAA) and haptoglobin (Hp) in goats. Nine goats were assigned to three diets (0%, 25%, and 50% corn grain) in a $3{\times}3$ Latin square experimental design. The results showed that as the proportion of dietary corn increased, the ruminal pH decreased (p<0.001), and the concentrations of propionate (p<0.001), butyrate (p<0.001), lactic acid (p = 0.013) and total volatile fatty acid (p = 0.031) elevated and the ruminal LPS level increased (p<0.001). As the proportion of dietary corn increased, the concentration of SAA increased (p = 0.013). LPS was detectable in the blood of individual goats fed 25% and 50% corn. A real-time PCR analysis showed that the copy number of phylum Bacteroidetes (p<0.001) was reduced ($4.61{\times}10^9$ copies/mL to $1.48{\times}10^9$ copies/mL) by the increasing dietary corn, and a correlation analysis revealed a significant negative correlation between the number of Bacteroidetes and rumen LPS levels. Collectively, these results indicated that feeding goats high proportions (50%) of corn grain decreased the ruminal pH, increased LPS in the rumen fluid and tended to stimulate an inflammatory response.

Keywords

References

  1. Alsemgeest, S. P, H. C. Kalsbeek, T. Wensing, J. P. Koeman, A. M. van Ederen, and E. Gruys. 1994. Concentrations of serum amyloid-A (SAA) and haptoglobin (HP) as parameters of inflammatory diseases in cattle. Vet. Q. 16:21-23. https://doi.org/10.1080/01652176.1994.9694410
  2. Ametaj, B. N. 2011. Application of acute phase proteins for monitoring inflammatory states in cattle. In Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases. F. Veas, ed. InTech, Rijeka, Croatia. Accessed Dec. 22, 2011.
  3. Ametaj, B. N., B. J. Bradford, G. Bobe, R. A. Nafikov, Y. Lu, J. W. Young, and D. C. Beitz. 2005. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Can. J. Anim. Sci. 85:165-175. https://doi.org/10.4141/A04-043
  4. Ametaj, B. N., D. G. Emmanuel, Q. Zebeli, and S. M. Dunn. 2009. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows. J. Dairy Sci. 92:1084-1091. https://doi.org/10.3168/jds.2008-1465
  5. Andersen, P. H., B. Bergelin and K. A. Christensen. 1994. Effect of feeding regimen on concentration of free endotoxin in ruminal fluid of cattle. J. Anim. Sci. 72:487-491.
  6. Andersen, P. H. 2003. Bovine endotoxicosis-some aspects of relevance to production diseases. A review. Acta Vet. Scand. Suppl. 98:141-155.
  7. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Arlington, Virginia.
  8. Aschenbach, J. R., T. Seidler, and F. Ahrens. 2003. Luminal salmonella endotoxin affects epithelial and mast cell function in the proximal colon of pigs. Scand. J. Gastroenterol. 38:719-726. https://doi.org/10.1080/00365520310003129
  9. Baker, S. B. and W. H. Summerson. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 138:535-554.
  10. Baumann, H. and J. Gauldie. 1994. The acute phase response. Immunol. Today 15:74-80. https://doi.org/10.1016/0167-5699(94)90137-6
  11. Beauchemin, K. and G. Penner. 2009. New developments in understanding ruminal acidosis in dairy cows. Tri-State Dairy Nutrition Conference 21-22 April 2009. pp. 1-12.
  12. Boosman, R., T. A. Niewold, C. W. Mutsaers, and E. Gruys. 1989. Serum amyloid A concentrations in cows given endotoxin as an acute-phase stimulant. Am. J. Vet. Res. 50:1690-1694.
  13. Chen, Y., M. Oba, and L. L. Guan. 2012. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet. Microbiol. 159:451-459. https://doi.org/10.1016/j.vetmic.2012.04.032
  14. Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  15. Dunlop, R. H. 1972. Pathogenesis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med. 16: 259-302.
  16. Eckersall, P. D. and R. Bell. 2010. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J. 185:23-27. https://doi.org/10.1016/j.tvjl.2010.04.009
  17. Eckersall, P. D. and J. G. Conner. 1988. Bovine and canine acute phase proteins. Vet. Res. Commun. 12:169-178. https://doi.org/10.1007/BF00362798
  18. Emmanuel, D. G. V., K. L. Madsen, T. A. Churchill, S. M. Dunn, and B. N. Ametaj. 2007. Acidosis and lipopolysaccharide from Escherichia coli B:055 cause hyperpermeability of rumen and colon tissues. J. Dairy Sci. 90:5552-5557. https://doi.org/10.3168/jds.2007-0257
  19. Emmanuel, D. G. V., S. M. Dunn, and B. N. Ametaj. 2008. Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. J. Dairy Sci. 91:606-614. https://doi.org/10.3168/jds.2007-0256
  20. Fernando, S. C., IIH. T. Purvis, F. Z. Najar, L. O. Sukharnikov, C. R. Krehbiel, T. G. Nagaraja, B. A. Roe and U. DeSilva. 2010. Rumen microbial population dynamics during adaptationto a high-grain diet. Appl. Environ. Microbiol. 76:7482-7490. https://doi.org/10.1128/AEM.00388-10
  21. Gabay, C. and I. Kushner. 1999. Acute phase proteins and other systemic responses to inflammation. New Engl. J. Med. 340: 448-454. https://doi.org/10.1056/NEJM199902113400607
  22. González, F. H., F. Tecles, S. Martínez-Subiela, A. Tvarijonaviciute, L. Soler, and J. J. Ceron. 2008. Acute phase protein response in goats. J. Vet. Diagn. Invest. 20:580-584. https://doi.org/10.1177/104063870802000507
  23. Gozho, G. N., D. O. Krause, and J. C. Plaizier. 2007. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J. Dairy Sci. 90:856-866. https://doi.org/10.3168/jds.S0022-0302(07)71569-2
  24. Gozho, G. N., J. C. Plaizier, D. O. Krause, A. D. Kennedy, and K. M. Wittenberg. 2005. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 88:1399-1403. https://doi.org/10.3168/jds.S0022-0302(05)72807-1
  25. Guo, X., X. Xia, R. Tang, J. Zhou, H. Zhao, and K. Wang. 2008. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 47: 367-373. https://doi.org/10.1111/j.1472-765X.2008.02408.x
  26. Hayward, R. D., J. M.. Leong, V. Koronakis, and K. G. Campellone. 2006. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Natl. Rev. Microbiol. 4:358-370. https://doi.org/10.1038/nrmicro1391
  27. Horadagoda, N. U., K. M. Knox, H. A. Gibbs, S. W. Reid, A. Horadagoda, S. E. Edwards, and P. D. Eckersall. 1999. Acute phase proteins in cattle: Discrimination between acute and chronic inflammation. Vet. Rec. 144:437-441. https://doi.org/10.1136/vr.144.16.437
  28. Hurley, J. C. 1995. Endotoxemia: methods of detection and clinical correlates. Clin. Microbiol. Rev. 8:268-292.
  29. Khafipour, E., D. O. Krause, and J. C. Plaizier. 2009a. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J. Dairy Sci. 92:1060-1070. https://doi.org/10.3168/jds.2008-1389
  30. Khafipour, E., S. Li, J. C. Plaizier, and D. O. Krause. 2009b. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 75:7115-7124. https://doi.org/10.1128/AEM.00739-09
  31. Kleen, J. L., G. A. Hooijer, J. Rehage, and J. P. Noordhuizen. 2003.Subacute ruminal acidosis (SARA): a review. J. Vet. Med. Series A 50:406-414. https://doi.org/10.1046/j.1439-0442.2003.00569.x
  32. Krishnamoorthy, U., T. V. Muscato, C. J. Sniffen, and P. J. VanSoest. 1982. Nitrogen fractions of selected feedstuffs. J. Dairy Sci. 65:217-225. https://doi.org/10.3168/jds.S0022-0302(82)82180-2
  33. Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022-1023. https://doi.org/10.1038/4441022a
  34. Li, S., E. Khafipour, D. O. Krause, A. Kroeker, J. C. Rodriguez-Lecompte, G. N. Gozho, and J. C. Plaizier. 2012. Effects of subacute ruminal acidosis challenges on fermentationand endotoxins in the rumen and hindgut of dairy cows. J. Dairy Sci. 95:294-303. https://doi.org/10.3168/jds.2011-4447
  35. Mao, S. Y., G. Zhang, and W. Y. Zhu. 2008. Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Anim. Feed Sci. Technol. 140: 293-306. https://doi.org/10.1016/j.anifeedsci.2007.04.001
  36. Nagaraja, T. G., E. E. Bartley, L. R. Fina, H. D. Anthony, and R. M. Bechtle. 1978. Evidence of endotoxins in the rumen bacteria of cattle fed hay or grain. J. Anim. Sci. 47:226-234.
  37. Nagaraja, T. G. and K. F. Lechtenberg. 2007. Acidosis in feedlot cattle. Vet. Clin. North Am. Food Anim. Pract. 23:333-350. https://doi.org/10.1016/j.cvfa.2007.04.002
  38. Nagaraja, T. G. and E. C. Titgemeyer. 2007. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J. Dairy Sci. 90(Suppl 1):E17-38. https://doi.org/10.3168/jds.2006-478
  39. Nazifi, S., S. M. Razavi, Z. Esmailnejad, and H. Gheisari. 2009. Study on acute phase proteins (haptoglobin, serum amyloid A, fibrinogen, and ceruloplasmin) changes and their diagnostic values in bovine tropical theileriosis. Parasitol. Res. 105:41-46. https://doi.org/10.1007/s00436-009-1360-x
  40. Nocek, J. E. 1997. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 80:1005-1028. https://doi.org/10.3168/jds.S0022-0302(97)76026-0
  41. NRC, 2007. Nutrient requirements of small ruminants: Sheep, goats, cervids and new world camelids. National Research Council, National Academies Press, Washington, USA.
  42. Penner, G. B., M. Taniguchi, L. L. Guan, K. A. Beauchemin, and M. Oba. 2009. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. J. Dairy Sci. 92:2767-2781. https://doi.org/10.3168/jds.2008-1716
  43. Plaizier, J. C., D. O. Krause, G. N. Gozho, and B. W. McBride. 2008. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J. 176: 21-31. https://doi.org/10.1016/j.tvjl.2007.12.016
  44. Steele, M., A. O. AlZahal, S. E. Hook, J. Croom, and B. W. McBride. 2009. Ruminal acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case report. Acta Vet. Scand. 51: 39. https://doi.org/10.1186/1751-0147-51-39
  45. Stenfeldt, C., P. M. Heegaard, A. Stockmarr, K. Tjornehoj, and G. J. Belsham. 2011. Analysis of the acute phase responses of Serum Amyloid A, Haptoglobin and Type 1 Interferon in cattle experimentally infected with foot-and-mouth disease virus serotype O. Vet. Res. 42:66. https://doi.org/10.1186/1297-9716-42-66
  46. Stone, W. C. 2004. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J. Dairy Sci. 87: E13-26. https://doi.org/10.3168/jds.S0022-0302(04)70057-0
  47. Underwood, W. J. 1992. Rumen lactic acidosis. Part II. Clinical signs, diagnosis, treatment, and prevention. The Compendium for continuing education for the practicing veterinarian 14: 1265-1270.
  48. Wells, J. E. and J. B. Russell. 1996. Why do many ruminal bacteria die and lyse so quickly? J. Dairy Sci. 79:1487-1495. https://doi.org/10.3168/jds.S0022-0302(96)76508-6
  49. Zebeli, Q. and B. U. Metzler-Zebeli. 2012. Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res. Vet. Sci. 93:1009-1108.
  50. Zebeli, Q., J. Dijkstra, M. Tafaj, H. Steingass, B. N. Ametaj, and W. Drochner. 2008. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J. Dairy Sci. 91:2046-2066. https://doi.org/10.3168/jds.2007-0572

Cited by

  1. Feeding a High-Concentrate Corn Straw Diet Induced Epigenetic Alterations in the Mammary Tissue of Dairy Cows vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0107659
  2. Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows vol.16, pp.1, 2016, https://doi.org/10.1186/s12866-016-0694-7
  3. High-concentrate feeding upregulates the expression of inflammation-related genes in the ruminal epithelium of dairy cattle vol.7, pp.1, 2016, https://doi.org/10.1186/s40104-016-0100-1
  4. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology vol.13, pp.2, 2018, https://doi.org/10.1371/journal.pone.0193313
  5. Reliability of a participant-friendly fecal collection method for microbiome analyses: a step towards large sample size investigation vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1249-x
  6. Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.00904
  7. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production paramet vol.92, pp.5, 2013, https://doi.org/10.1093/femsec/fiw059
  8. Starch sources and concentration in diet of dairy goats affected ruminal pH and fermentation, and inflammatory response vol.59, pp.9, 2019, https://doi.org/10.1071/an17758
  9. Effect of high-concentrate diets on microbial composition, function, and the VFAs formation process in the rumen of dairy cows vol.269, pp.None, 2013, https://doi.org/10.1016/j.anifeedsci.2020.114619
  10. The Effect of Replacing Wildrye Hay with Mulberry Leaves on the Growth Performance, Blood Metabolites, and Carcass Characteristics of Sheep vol.10, pp.11, 2013, https://doi.org/10.3390/ani10112018
  11. Translocation of intrauterine‐infused bacterial lipopolysaccharides to the mammary gland in dexamethasone‐treated goats vol.55, pp.12, 2013, https://doi.org/10.1111/rda.13820
  12. The Regulatory Mechanism of Feeding a Diet High in Rice Grain on the Growth and microRNA Expression Profiles of the Spleen, Taking Goats as an Artiodactyl Model vol.10, pp.9, 2013, https://doi.org/10.3390/biology10090832