References
- Akhmanova, A., F. G. J. Voncken, K. M. Hosea, H. Harhangi, J. T. Keltjens, H. J. M. op den Camp, G. D. Vogels, and J. H. P. Hackstein. 1999. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol. Microbiol. 32:1103-1114. https://doi.org/10.1046/j.1365-2958.1999.01434.x
- Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260-296.
- Bauchop, T. and D. O. Mountfort. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42:1103-1110.
- Beckonert, O., H. C. Keun, T. M. Ebbels, J. Bundy, E. Holmes, J. C. Lindon, and J. K. Nicholson. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2:2692-2703. https://doi.org/10.1038/nprot.2007.376
- Boxma, B., F. Voncken, S. Jannink, T. van Alen, A. Akhmanova, S. W. van Weelden, J. J. van Hellemond, G. Ricard, M. Huynen, A. G. Tielens, and J. H. Hackstein. 2004. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate: formate lyase and an alcohol dehydrogenase E. Mol. Microbiol. 51:1389-1399. https://doi.org/10.1046/j.1365-2958.2003.03912.x
- Carrieri, D., K. McNeely, A. C. De Roo, N. Nennette, I. Pelczer, and G. C. Dismukes. 2009. Identification and quantification of water-soluble metabolites by cryoprobe-assisted nuclear magnetic resonance spectroscopy applied to microbial fermentation. Magn. Reson. Chem. 47:S138-S146. https://doi.org/10.1002/mrc.2420
- Cheng, Y. F., J. E. Edwards, G. G. Allison, W. Y. Zhu, and M. K. Theodorou. 2009. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour. Technol. 100:4821-4828. https://doi.org/10.1016/j.biortech.2009.04.031
- Cheng, Y. F., S. Y. Mao, C. X. Pei, J. X. Liu, and W. Y. Zhu. 2006. Detection and diversity analysis of rumen methanogens in co-cultures with anaerobic fungi. Acta Microbiologica Sinica 46: 879-883.
- Chikayama, E., M. Suto, T. Nishihara, K. Shinozaki, T. Hirayama, and J. Kikuchi. 2008. Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: coarse grained views of metabolic pathways. PLoS ONE 3: e3805. https://doi.org/10.1371/journal.pone.0003805
- Grivet, J. P. 2001. NMR and microorganisms. Curr. Issues Mol. Biol. 3:7-14.
- Grivet, J. P. and A. M. Delort. 2009. NMR for microbiology: In vivo and in situ applications. Prog. Nucl. Magn. Reson. Spectrosc. 54:1-53. https://doi.org/10.1016/j.pnmrs.2008.02.001
- Hungate, R. E. 1982. Methane formation and cellulose digestion biochemical ecology and microbiology of the rumen ecosystem. Experimenta 38:189-192. https://doi.org/10.1007/BF01945072
- Jin, W., Y. F. Cheng, S. Y. Mao, and W. Y. Zhu. 2011. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour. Technol. 102:7925-7931. https://doi.org/10.1016/j.biortech.2011.06.026
- Joblin, K. N., G. E. Naylor, and A. G. Williams. 1990. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl. Environ. Microbiol. 56:2287-2295.
- Kwon, M., J. Song, J. K. Ha, H. S. Park, and J. Chang. 2009. Analysis of functional genes in carbohydrate metabolic pathway of anaerobic rumen fungus Neocallimastix frontalis PMA02. Asian-Aust. J. Anim. Sci. 22:1555-1565. https://doi.org/10.5713/ajas.2009.80371
- Liu J. H. 2009. Metabolic profiles of natural co-cultures of anaerobic fungi and methanogens in vitro and the production of lactate. Ma.D. Thesis, Nanjing Agricultural University, Nanjing, China.
- Marvin-Sikkema, F. D., A. J. Richardson, C. S. Steward, J. C. Gottschal, and R. A. Prins. 1990. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol. 56:3793-3797.
- Mountfort, D. O., R. A. Asher, and T. Bauchop. 1982. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44:128-134.
- Nakashimada, Y., K. Srinivasan, M. Murakami, and N. Nishio. 2000. Direct conversion of cellulose to methane by anaerobic fungus Neocallimastix frontalis and defined methanogens. Biotechnol. Lett. 22:223-227. https://doi.org/10.1023/A:1005666428494
- Orpin, C. G. 1975. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 91:249-262. https://doi.org/10.1099/00221287-91-2-249
- O'Fallon, J. V., R. W. Wright, and R. E. Calza. 1991. Glucose metabolic pathways in the anaerobic rumen fungus Neocallimastix frontalis EB188. J. Biochem. 274:595-599.
- Pham, L. H., J. Vater, W. Rotard, and C. Mugge. 2005. Identification of secondary metabolites from Streptomyces violaceoruber TU22 by means of on-flow LC-NMR and LC-DAD-MS. Magn. Reson. Chem. 43:710-723. https://doi.org/10.1002/mrc.1633
- Teunissen, M. J., E. P. W. Kets, H. J. M. Op den Camp, J. H. J. Huis in't Veld, and G. D. Vogels. 1992. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch. Microbiol. 157:176-182.
- Theodorou, M. K., D. R. Davies, and C. G. Orpin. 1995. Nutrition and survival of anaerobic fungi. In: Anaerobic fungi: Biology, Ecology and Function (Ed. D. O. Mountfort and C. G. Oprin). Marcel Dekker, New York, USA. pp. 107-128.
- Theodorou, M. K., G. Mennim, D. R. Davies, W. Y. Zhu, A. P. Trinci, and J. L. Brookman. 1996. Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation. Proc. Nutr. Soc. 55:913-926. https://doi.org/10.1079/PNS19960088
Cited by
- Effect of the Associated Methanogen Methanobrevibacter thaueri on the Dynamic Profile of End and Intermediate Metabolites of Anaerobic Fungus Piromyces sp. F1 vol.73, pp.3, 2016, https://doi.org/10.1007/s00284-016-1078-9
- Exploring the bioprospecting and biotechnological potential of white-rot and anaerobic Neocallimastigomycota fungi: peptidases, esterases, and lignocellulolytic enzymes vol.101, pp.8, 2017, https://doi.org/10.1007/s00253-017-8225-5
- PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01657
- Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate pp.0233111X, 2017, https://doi.org/10.1002/jobm.201700132
- The biotechnological potential of anaerobic fungi on fiber degradation and methane production vol.34, pp.10, 2018, https://doi.org/10.1007/s11274-018-2539-z
- Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters vol.68, pp.7, 2018, https://doi.org/10.1007/s13213-018-1351-1
- Rumen function in goats, an example of adaptive capacity vol.87, pp.1, 2013, https://doi.org/10.1017/s0022029920000060
- Dynamics and metabolic profile of oral keratinocytes (NOK-si) and Candida albicans after interaction in co-culture vol.37, pp.5, 2013, https://doi.org/10.1080/08927014.2021.1941908
- Isolation and Biochemical Characterization of Six Anaerobic Fungal Strains from Zoo Animal Feces vol.9, pp.8, 2013, https://doi.org/10.3390/microorganisms9081655