DOI QR코드

DOI QR Code

Association of Polymorphism Harbored by Tumor Necrosis Factor Alpha Gene and Sex of Calf with Lactation Performance in Cattle

  • Yudin, N.S. (Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences) ;
  • Aitnazarov, R.B. (Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences) ;
  • Voevoda, M.I. (Institute of Internal Medicine, Siberian Branch of the Russian Academy of Medical Sciences) ;
  • Gerlinskaya, L.A. (Institute of Animal Systematics and Ecology, Siberian Branch of the Russian Academy of Sciences) ;
  • Moshkin, M.P. (Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences)
  • Received : 2013.02.21
  • Accepted : 2013.05.22
  • Published : 2013.10.01

Abstract

In a majority of mammals, male infants have heavier body mass and grow faster than female infants. Accordingly, male offspring nursing requires a much greater maternal energy contribution to lactation. It is possible that the maternal-fetal immunoendocrine dialog plays an important role in female preparation for lactation during pregnancy. Immune system genes are an integral part of gene regulatory networks in lactation and tumor necrosis factor alpha ($TNF{\alpha}$) is a proinflammatory cytokine that also plays an important role in normal mammary gland development. The aim of this study was to evaluate the influence of the sex of calf and/or the -824A/G polymorphism in the promoter region of $TNF{\alpha}$ gene on milk performance traits in Black Pied cattle over the course of lactation. We also studied the allele frequency differences of -824A/G variants across several cattle breeds, which were bred in different climatic conditions. The G allele frequency decreased gradually over the course of lactation events in the Black Pied dairy cattle because of a higher culling rate of cows with the G/G genotype (p<0.001). In contrast to the genotypes A/A and A/G, cows with G/G genotype showed significant variability of milk and milk fat yield subject to sex of delivered calf. Milk yield and milk fat yield were significantly higher in the case of birth of a bull calf than with a heifer calf (p<0.03). The G allele frequency varies from 48% to 58% in Grey Ukrainian and Black Pied cattle to 77% in aboriginal Yakut cattle. Our results suggest that the $TNF{\alpha}$-824A/G gene polymorphism may have an influence on the reproductive efforts of cows over the course of lactation events depending on the sex of progeny. Allocation of resources according to sex of the calf allows optimizing the energy cost of lactation. This may be a probable reason for high G allele frequency in Yakut cattle breeding in extreme environmental conditions. Similarly, the dramatic fall in milk production after birth of a heifer calf increases the probability of culling for the cows with the G/G genotype in animal husbandry.

Keywords

References

  1. Alwasel, S. H., Z. Abotalib, J. S. Aljarallah, C. Osmond, S. M. Alkharaz, I. M. Alhazza, A. Harrath, K. Thornburg, and D. J. Barker. 2011. Sex differences in birth size and intergenerational effects of intrauterine exposure to Ramadan in Saudi Arabia. Am. J. Hum. Biol. 23:651-654. https://doi.org/10.1002/ajhb.21193
  2. Asdell, S. A. 1964. Patterns of mammalian reproduction. Cornell University Press, New York.
  3. Atabai, K., D. Sheppard, and Z. Werb. 2007. Roles of the innate immune system in mammary gland remodeling during involution. J. Mammary Gland Biol. Neoplasia 12:37-45. https://doi.org/10.1007/s10911-007-9036-6
  4. Beecher, C., M. Daly, S. Childs, D. P. Berry, D. A. Magee, T. V. McCarthy, and L. Giblin. 2010. Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle. BMC Genetics 11:99.
  5. Chaouat, G., N. Ledee-Bataille, S. Dubanchet, S. Zourbas, O. Sandra, and J. Martal. 2004. TH1/TH2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the TH1/TH2 paradigm. Int. Arch. Allergy Immunol. 134:93-119. https://doi.org/10.1159/000074300
  6. Chaouat, G., S. Dubanchet, and N. Ledee. 2007. Cytokines: Important for implantation? J. Assist. Reprod. Genet. 24:491-505. https://doi.org/10.1007/s10815-007-9142-9
  7. Clutton-Brock, T. H., S. D. Albon, and F. E. Guinness. 1981. Parental investment in male and female offspring in polygynous mammals. Nature 289:487-489. https://doi.org/10.1038/289487a0
  8. Faucon, F., E. Rebours, C. Bevilacqua, J. C. Helbling, J. Aubert, S. Makhzami, S. Dhorne-Pollet, S. Robin, and P. Martin P. 2009. Terminal differentiation of goat mammary tissue during pregnancy requires the expression of genes involved in immune functions. Physiol. Genomics 40:61-82. https://doi.org/10.1152/physiolgenomics.00032.2009
  9. Galbarczyk, A. 2011. Unexpected changes in maternal breast size during pregnancy in relation to infant sex: an evolutionary interpretation. Am. J. Hum. Biol. 23:560-562. https://doi.org/10.1002/ajhb.21177
  10. Granberg, L., K. Soini, and J. Kantanen. 2009. Sakha Ynaga-cattle of the Yakuts. Finnish Academy of Science and Letters, Helsinki.
  11. Graves, J. A. 2010. Review: Sex chromosome evolution and the expression of sex-specific genes in the placenta. Placenta 31:S27-S32. https://doi.org/10.1016/j.placenta.2009.12.029
  12. Herman, S., N. Zurgil, S. Machlav, A. Shinberg, P. Langevitz, M. Ehrenfeld, and M. Deutsch 2011. Distinct effects of anti-tumor necrosis factor combined therapy on TH1/TH2 balance in rheumatoid arthritis patients. Clin. Vaccine Immunol. 18:1077-1082. https://doi.org/10.1128/CVI.00061-11
  13. Huang, H., H. Deng, Y. Yang, Z. Tang, S. Yang, Y. Mu, W. Cui, J. Yuan, Z. Wu, and K. Li. 2010. Molecular characterization and association analysis of porcine PANE1 gene. Mol. Biol. Rep. 37:2571-2577. https://doi.org/10.1007/s11033-009-9775-0
  14. Jaczewski, Z. 1958. Reproduction of the European bison, Bison bonasus (L.), in reserves. Acta Theriol. 1:333-376.
  15. ICAR. 2012. International Committee for Animal Recording. International agreement on recording practices.
  16. Kantanen, J., C. J. Edwards, D. G. Bradley, H. Viinalass, S. Thessler, Z. Ivanova, T. Kiselyova, M. Cinkulov, R. Popov, S. Stojanović, I. Ammosov, and J. Vilkki. 2009. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity 103:404-415. https://doi.org/10.1038/hdy.2009.68
  17. Konnai, S., T. Usui, M. Ikeda, J. Kohara, T. Hirata, K. Okada, K. Ohashi, and M. Onuma. 2006. Tumor necrosis factor-alpha genetic polymorphism may contribute to progression of bovine leukemia virus-infection. Microbes Infect. 8:2163-2171. https://doi.org/10.1016/j.micinf.2006.04.017
  18. Lark, K. G., K. Chase, and N. B. Sutter. 2006. Genetic architecture of the dog: sexual size dimorphism and functional morphology. Trends Genet. 22:537-544. https://doi.org/10.1016/j.tig.2006.08.009
  19. Lemay, D. G., M. C. Neville, M. C. Rudolph, K. S. Pollard, and J. B. German. 2007. Gene regulatory networks in lactation: identification of global principles using bioinformatics. BMC Syst. Biol. 1:56. https://doi.org/10.1186/1752-0509-1-56
  20. Leyva-Baca, I., F. Schenkel, B.S. Sharma, G. B. Jansen, and N. A. Karrow. 2007. Identification of single nucleotide polymorphisms in the bovine CCL2, IL8, CCR2 and IL8RA genes and their association with health and production in Canadian Holsteins. Anim. Genet. 38:198-202. https://doi.org/10.1111/j.1365-2052.2007.01588.x
  21. Lin, C. Y., A. J. McAllister, K. F. Ng-Kwai-Hang, J. F. Hayes, T. R. Batra, A. J. Lee, G. L. Roy, J. A. Vesely, J. M. Wauthy, and K. A. Winter. 1987. Association of milk protein types with growth and reproductive performance of dairy heifers. J. Dairy Sci. 70:29-39. https://doi.org/10.3168/jds.S0022-0302(87)79977-9
  22. Locksley, R. M., N. Killeen, and M. J. Lenardo. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487-501. https://doi.org/10.1016/S0092-8674(01)00237-9
  23. Loos, R. J., C. Derom, R. Eeckels, R. Derom, and R. Vlietinck, 2001. Length of gestation and birthweight in dizygotic twins. Lancet 358:560-561. https://doi.org/10.1016/S0140-6736(01)05716-6
  24. More, D., K. Heaton, S. Poisson, and W. Sischo. 2010. The Calf's First Environment - The Maternity Pen. Accessed Feb. 12, 2013. http://vetextension.wsu.edu/documents/CalfEnv1-MaternityPen.pdf.
  25. Ng, J. 2001. Animal diversity web. Accessed Feb. 12, 2013. http://animaldiversity.ummz.umich.edu/site/accounts/information/Bos_taurus.html.
  26. Nielsen, H. S. 2011. Secondary recurrent miscarriage and H-Y immunity. Hum. Reprod. Update 17:558-574. https://doi.org/10.1093/humupd/dmr005
  27. Pant, S. D., F. S. Schenkel, I. Leyva-Baca, B. S. Sharma, and N. A. Karrow. 2007. Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics 8:421. https://doi.org/10.1186/1471-2164-8-421
  28. Rodriguez, S. M., A. Florins, N. Gillet, A. de Brogniez, M. T. Sanchez-Alcaraz, M. Boxus, F. Boulanger, G. Gutiérrez, K. Trono, I. Alvarez, L. Vagnoni, and L. Willems. 2011. Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 3:1210-1248. https://doi.org/10.3390/v3071210
  29. Sanford, T. R., M. De, and G. W. Wood. 1992. Expression of colony-stimulating factors and inflammatory cytokines in the uterus of CD1 mice during days 1 to 3 of pregnancy. J. Reprod. Fertil. 94:213-220. https://doi.org/10.1530/jrf.0.0940213
  30. Semenova, S. K., V. A. Vasil'ev, E. V. Morozova, A. V. Slyn'ko, E. P. Steklenev, I. P. Belousova, I. V. Kudriavtsev, and A. P. Ryskov. 2000. DNA fingerprinting and genetic diversity of the European bison (Bison bonasus), American bison (Bison bison), and gray Ukrainian cattle (Bos taurus). Genetika 36:1535-1545 (In Russian).
  31. Sherry, S. T., M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin. 2001. dbSNP: the NCBI database of genetic variation. Nucl. Acids Res. 29:308-311. https://doi.org/10.1093/nar/29.1.308
  32. Shirasuna, K., C. Kawashima, C. Murayama, Y. Aoki, Y. Masuda, K. Kida, M. Matsui, T. Shimizu, and A. Miyamoto. 2011. Relationships between the first ovulation postpartum and polymorphism in genes relating to function of immunity, metabolism and reproduction in high-producing dairy cows. J. Reprod. Dev. 57:135-142. https://doi.org/10.1262/jrd.10-100T
  33. Small Farm Resource. 2002. Culling dairy cows. Accessed Feb. 12, 2013. http://www.farminfo.org/dairy/culling.htm.
  34. Tetzlaff, S., E. Jonas, C. Phatsara, E. Murani, S. Ponsuksili, K. Schellander, and K. Wimmers. 2009. Evidence for association of lymphoid enhancer-binding factor-1 (LEF1) with the number of functional and inverted teats in pigs. Cytogenet. Genome Res. 124:139-146. https://doi.org/10.1159/000207521
  35. Toder, V., A. Fein, H. Carp, and A. Torchinsky. 2003. TNF-alpha in pregnancy loss and embryo maldevelopment: a mediator of detrimental stimuli or a protector of the fetoplacental unit? J. Assist. Reprod. Genet. 20:73-81. https://doi.org/10.1023/A:1021740108284
  36. van der Most, P. J., B. de Jong, H. K. Parmentier, and S. Verhulst. 2011. Trade-off between growth and immune function: a meta-analysis of selection experiments. Funct. Ecol. 25:74-80. https://doi.org/10.1111/j.1365-2435.2010.01800.x
  37. van Vuure, C. 2005. Retracing the aurochs: History, morphology and ecology of an Extinct Wild Ox. Pensoft Publishers, Sofia-Moscow.
  38. Vorbach, C., M. R. Capecchi, and J. M. Penninger. 2006. Evolution of the mammary gland from the innate immune system? Bioessays 28:606-616. https://doi.org/10.1002/bies.20423
  39. Wallace, R. 2002. Market Cows: A Potential Profit Center. Accessed Feb. 12, 2013. http://www.livestocktrail.uiuc.edu/ dairynet/paperdisplay.cfm?contentid=354.
  40. Warren, M. A., S. F. Shoemaker, D. J. Shealy, W. Bshar, and M. M. Ip. 2009. Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol. Cancer Ther. 8:2655-2663. https://doi.org/10.1158/1535-7163.MCT-09-0358
  41. Watson, C. J. 2009. Immune cell regulators in mouse mammary development and involution. J. Anim. Sci. 87:35-42.
  42. Wohlt, J. E., W. L. Foy, D. M. Kniffen, and J. R. Trout. 1984. Milk yield by Dorset ewes as affected by sibling status, sex and age of lamb, and measurement. J. Dairy Sci. 67:802-807. https://doi.org/10.3168/jds.S0022-0302(84)81370-3

Cited by

  1. Role of polymorphism in gene PANE1 in the formation of reproductive indices in pigs vol.4, pp.6, 2014, https://doi.org/10.1134/S2079059714060227
  2. Effect of calf sex on some productive, reproductive and health traits in Holstein cows vol.13, pp.2, 2015, https://doi.org/10.5424/sjar/2015132-6320
  3. Molecular genetic markers of economically important traits in dairy cattle vol.51, pp.5, 2015, https://doi.org/10.1134/S1022795415050087
  4. gene with reproductive traits in indigenous and cross-bred cattle of Indian Origin pp.09366768, 2017, https://doi.org/10.1111/rda.13129
  5. Sequence Characterization in 3′-Flanking Region of Bovine TNF-α: Association with Milk Production Traits and Somatic Cell Score in Holstein Cattle of Iran vol.16, pp.1, 2018, https://doi.org/10.21859/ijb.1195
  6. Bias of Calf Sex on Milk Yield and Fat Yield in Holstein Crossbreed Cows vol.11, pp.9, 2013, https://doi.org/10.3390/ani11092536