DOI QR코드

DOI QR Code

Perspective of Membrane Technology in Dairy Industry: A Review

  • Kumar, Pavan (Department of Livestock Product and Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University) ;
  • Sharma, Neelesh (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University) ;
  • Ranjan, Rajeev (Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, LLRUVAS) ;
  • Kumar, Sunil (Department of Livestock Product and Technology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu) ;
  • Bhat, Z.F. (Department of Livestock Product and Technology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu) ;
  • Jeong, Dong Kee (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University)
  • 투고 : 2013.02.01
  • 심사 : 2013.06.05
  • 발행 : 2013.09.01

초록

Membrane technology has revolutionized the dairy sector. Different types of membranes are used in the industry for various purposes like extending the shelf life of milk without exposure to heat treatment, standardization of the major components of milk for tailoring new products as well increasing yield and quality of the dairy products, and concentrating, fractionation and purification of milk components especially valuable milk proteins in their natural state. In the cheese industry, membranes increase the yield and quality of cheese and control the whey volume, by concentrating the cheese milk. With the advancement of newer technology in membrane processes, it is possible to recover growth factor from whey. With the introduction of superior quality membranes as well as newer technology, the major limitation of membranes, fouling or blockage has been overcome to a greater extent.

키워드

참고문헌

  1. Anand, A., A. Hassan, and M. Avadhanula. 2012. The effects of biofilms formed on whey reverse osmosis membranes on the microbial quality of the concentrated product. Int. J. Dairy Technol. 65:451-455. https://doi.org/10.1111/j.1471-0307.2012.00848.x
  2. Balannec, B., M. Vourch, M. Rabiller-Baudry, and B. Chaufer. 2005. Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Sep. Purif. Technol. 42:195-200. https://doi.org/10.1016/j.seppur.2004.07.013
  3. Brans, G., C. G. P. H. Schroen, R. G. M. Van der Sman, and R. M. Boom. 2004. Membrane fractionation of milk: state of the art and challenges. J. Memb. Sci. 243:263-272. https://doi.org/10.1016/j.memsci.2004.06.029
  4. Burton-Freeman, B. M. 2008. Glycomacropeptide (GMP) is not critical to whey-induced satiety, but may have a unique role in energy intake regulation through cholecystokinin (CCK). Physiol. Behav. 93:379-387. https://doi.org/10.1016/j.physbeh.2007.09.010
  5. Caron, A., D. Saint Gelais, and Y. Pouliot. 1997. Coagulation of milk enriched with ultrafiltered or diafiltered microfiltered milk retentate powders. Int. Dairy J. 7:445-451. https://doi.org/10.1016/S0958-6946(97)00024-1
  6. Chakravorty, B. and D. P. Singh. 1990. Concentration and purification of gelatin liquor by ultrafiltration. Desalination. 78:279-286. https://doi.org/10.1016/0011-9164(90)80047-F
  7. Chaufer, B., M. Rollin, and B. Sebille. 1991. High-performance liquid chromatography and ultrapltration of whey proteins with inorganic porous materials coated with polyvinylimidazole derivatives. J. Chromatogr. 548:215-228. https://doi.org/10.1016/S0021-9673(01)88603-9
  8. Chen, J. P. and C. H. Wang. 1991. Microfiltration affinity purification of lactoferrin and immunoglobulin G from cheese whey. J. Food Sci. 56:701-706. https://doi.org/10.1111/j.1365-2621.1991.tb05360.x
  9. Childress, A. E. and M. Elimelech. 2000. Relating nanofiltration membrane performance to membrane charge (Electrokinetic) characteristics. Environ. Sci. Technol. 34:3710-3716. https://doi.org/10.1021/es0008620
  10. Damerow, G. 1989. Die anwendung der mikrofiltration fur die konsummilch, kessel-milch, Molke. Dtsch. Molkerei Zeitung. 110:1602-1608
  11. Daufin, G., J. P. Escudier, H. Carrere, S. Berot, L. Fillaudeau, and M. Decloux. 2001. Recent and emerging applications of membrane processes in the food and dairy industry. Trans. ICheme. 79:89-102.
  12. Ding, L., O. Al-Akoum, A. Abraham, and M. Y. Jaffrin. 2002. Milk protein concentration by ultrafiltration with rotating disk modules. Desalination 144:307-311. https://doi.org/10.1016/S0011-9164(02)00334-X
  13. Doyen, W., W. Adriansens, B. Molenberghs, and R. Leysen. 1996. A comparison between polysulfone, zirconia and organo-mineral membranes for use in ultrafiltration. J. Memb. Sci. 113: 247-258. https://doi.org/10.1016/0376-7388(95)00124-7
  14. Duriyabunleng, H., J. Petmunee, and C. Muangnapoh. 2001. Effects of the ultrasonic waves on microfiltration in plate and frame module. J. Chem. Eng. Jpn. 34:985-989. https://doi.org/10.1252/jcej.34.985
  15. Famelart, M. H., C. Hardy, and G. Brule. 1989. Optimisation of the preparation of p-casein-enriched solution. Lait 69:47-57. https://doi.org/10.1051/lait:198914
  16. Fauquant, J., E. Vieco, G. Brule, and J. L. Maubois. 1985. Clarification of sweet cheese whey by thermocalcic aggregation of residual fat. Lai. 65:1-20. https://doi.org/10.1051/lait:1985647-6481
  17. Fauquant, J., J. L. Maubois, and A. Pierre. 1988. Microfiltration du lait sur membrane minerale. Tech. Laitiere Mark. 1028:21-23.
  18. Fritsch, J. and C. I. Moraru. 2008. Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk. J. Dairy Sci. 91:3744-3760. https://doi.org/10.3168/jds.2007-0899
  19. Gauthier, S. F., Y. Pouliot, and J. L. Maubois. 2006. Growth factors from bovine milk and colostrum: composition, extraction and biological activities. Lait 86:99-125. https://doi.org/10.1051/lait:2005048
  20. Gesan, G., G. Daufin, U. Merin, J. P. Labbe, and A. Quemerais. 1995. Microfiltration performance: Physiochemical aspects of whey pre-treatment. J. Dairy Res. 62:269-279. https://doi.org/10.1017/S0022029900030971
  21. Goff, H. D. and M. W. Griffiths. 2006. Major advances in fresh milk and milk products: Fluid milk products and dairy desserts. J. Dairy Sci. 89:1163-1173. https://doi.org/10.3168/jds.S0022-0302(06)72185-3
  22. Goudedranche, H., J. J. Fauquant, and J. L. Maubois. 2000. Fractionation of globular milk fat by membrane microfiltration. Lait 80:93-98. https://doi.org/10.1051/lait:2000110
  23. Govindasamy-Lucey, S., J. J. Jaeggi, M. E. Johnson, T. Wang, and J. A. Lucey. 2007. Use of cold microfiltration retentates produced with polymeric membranes for standardization of milks for manufacture of pizza cheese. J. Dairy Sci. 90:4552-4568. https://doi.org/10.3168/jds.2007-0128
  24. Greiter, M., S. Novalin, M. Wendland, K. D. Kulbe, and J. Fischer. 2002. Desalination of whey by electrodialysis and ion exchange resins: analysis of both processes with regard to sustainability by calculating their cumulative energy demand. J. Memb. Sci. 210:91-102. https://doi.org/10.1016/S0376-7388(02)00378-2
  25. Guinee, T. P., B. T. Kennedy, and P. M. Kelly. 2006. Effect of milk protein standardization using different methods on the composition and yields of cheddar cheese. J. Dairy Sci. 89: 468-482. https://doi.org/10.3168/jds.S0022-0302(06)72110-5
  26. Guinee, T. P., P. D. Pudja, W. J. Reville, D. Harrington, O. E. Mulholland, M. Cotter, and T. M. Cogan. 1995. Composition, microstructure and maturation of semi-hard cheese from high protein ultrafiltered milk retentates with different levels of denatured whey protein. Int. Dairy J. 5:543-568. https://doi.org/10.1016/0958-6946(94)00021-G
  27. Hallstrom, M. and P. Dejmek. 1988. Rheological properties of ultrafiltered skim milk. I. Effects of pH, temperature and heat pretreatment. Milchwissenschaft 43:31-34.
  28. Harper, W. J. 1992. New applications of membrane processes- In IDF Spl. Iss. 9201. Brussels, Belgium. pp. 77-108.
  29. Henning, D. R., R. J. Baer, A. N. Hassan, and R. Dave. 2006. Major advances in concentrated and dry milk products, cheese and milk fat-based concepts. J. Dairy Sci. 89:1179-1188. https://doi.org/10.3168/jds.S0022-0302(06)72187-7
  30. Hoffmann, W., C. Kiesner, I. Clawinradecker, D. Martin, K. Einhoff, P. C. Lorenzen, H. Meisel, P. Hammer, G. Suhren, and P. Teufel. 2006. Processing of extended shelf life milk using microfiltration. Int. J. Dairy Technol. 59:229-235. https://doi.org/10.1111/j.1471-0307.2006.00275.x
  31. Horton, B. S. 1997a. Whatever happened to the ultrafiltration of milk? Aust. J. Dairy Technol. 52:47-49.
  32. Horton, B. S. 1997b. Water, chemical and brine recycle or reuse-Applying membrane processes. Aust. J. Dairy Technol. 52:68-70.
  33. Horton, B. S. 1998. The whey processing industry-into the 21st century. In: Whey. IDF Bulletin. 9804. Brussels, Belgium pp. 12-25.
  34. Huimin, M., L. F. Hakim, C. N. Bowman, and R. H. Davis. 2001. Factors affecting membrane fouling reduction by surface modification and backpulsing. J. Memb. Sci. 189:255-270. https://doi.org/10.1016/S0376-7388(01)00422-7
  35. James B. J. and Y. X. D. Jing Chen. 2003. Membrane fouling during filtration of milk-a microstructural study. J. Food Eng. 60:431-437. https://doi.org/10.1016/S0260-8774(03)00066-9
  36. Jelen, P. and A. Renz-Schauen. 1989. Quarg manufacturing innovations and their effects on quality, nutritive value, and consumer acceptance. Food Technol. 43:74-81.
  37. Jimenez-Lopez, A. J. E., N. Leconte, O. Dehainault, C. Geneste, L. Fromont, and G. Gesan-Guiziou. 2008. Role of milk constituents on critical conditions and deposit structure in skim milk microfiltration (0.1$\mu{m}$). Sep. Purif. Technol. 61:33-43. https://doi.org/10.1016/j.seppur.2007.09.023
  38. Johnson, M. E. and J. A. Lucey. 2006. Major technological advances and trends in cheese. J. Dairy Sci. 89:1174-1178. https://doi.org/10.3168/jds.S0022-0302(06)72186-5
  39. Kelly, P. M., B. S. Horton, and H. Burling. 1991. Partial demineralization of whey by nanofiltration. In: New applications of membrane processes. IDF Bulletin 9201 Brussels, Belgium. pp. 130-140.
  40. Krstic, D. M., M. N. Tekic, M. D. Caric, and D. S. Milanovic. 2002. The effect of turbulence promoter on cross-flow microfiltration of skim milk. J. Memb. Sci. 208:303-314. https://doi.org/10.1016/S0376-7388(02)00308-3
  41. Kumar, C. G. and S. K. Anand. 1998. Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 42: 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9
  42. Kumar, S. and D. C. Rai. 2010. Effect of antioxidants and paraffin wax on the physico-chemical properties of aerobically packaged buffalo milk paneer at refrigeration temperature. Milchwissenschaft 65:388- 393.
  43. Kumar, S., D. C. Rai, and D. N. Verma. 2008. Effect of different levels of lactic acid on the physico-chemical and sensory attributes of buffalo milk paneer. Indian J. Anim. Res. 42:205-208.
  44. Kumar, S., D. C. Rai, K. Niranjan, and Z. F. Bhat. 2011a. Paneer- an Indian soft cheese variant : a review. J. Food Sci. Technol. Doi 10.1007 s13197-011-0567-x.
  45. Kumar, S., Z. F. Bhat, and P. Kumar. 2011b. Effect of apple pulp and Celosia argentia on the quality of characteristics of Shrikhand. Am. J. Food Technol. 6: 817-826. https://doi.org/10.3923/ajft.2011.817.826
  46. Lawrence, N. D., S. E. Kentish, A. J. OConnor, A. R. Barber, and G. W. Stevens. 2008. Microfiltration of skim milk using polymeric membranes for casein concentrate manufacture. Sep. Purif. Technol. 60:237-244. https://doi.org/10.1016/j.seppur.2007.08.016
  47. Levesley, J. A. and M. Hoare. 1999. The effect of high frequency back flushing on the microfiltration of yeast homogenate suspensions for the recovery of soluble proteins. J. Memb. Sci. 158:29-39. https://doi.org/10.1016/S0376-7388(99)00031-9
  48. Lipnizki, F. 2010. Cross-flow membrane applications in the food industry. In: Membrane Technology, Vol 3: Membranes for Food Applications (Ed. Klaus-Viktor Peinemann, Suzana Pereira Nunes, and Lidietta Giorno). WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.
  49. Lorenzen, P. C., I. C. Decker, K. Einhoff, P. Hammer, R. Hartmann, W. Hoffmann, D. Martin, J. Molkentin, H. G. Walte, and M. Devrese. 2011. A survey of the quality of extended shelf life (ESL) milk in relation to HTST and UHT milk. Int. J. Dairy Technol. 64:166-178. https://doi.org/10.1111/j.1471-0307.2010.00656.x
  50. Madec, M. N., S. Mejean, and J. L. Maubois. 1992. Retention of Listeria and Salmonella cells contaminating skim milk by tangential membrane microfiltration (Bactocatch process). Lait. 72:327-332. https://doi.org/10.1051/lait:1992325
  51. Mailliart, P. and B. Ribadeau-Dumas. 1988. Preparation of $\beta$-lactoglobulin and p-lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH. J. Food Sci. 53:743-747. https://doi.org/10.1111/j.1365-2621.1988.tb08945.x
  52. Makardij, A., X. D. Chen, and M. M. Farid. 1999. Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning. Trans. IChemE. 77:107-113. https://doi.org/10.1205/095758299529910
  53. Malmberg, R. and S. Holms. 1988. Producing low-bacteria milk by microfiltration. N. Eur. Food Dairy J. 54:30-32.
  54. Maubois, J. L. 2002. Membrane microfiltration: a tool for a new approach in dairy technology. Aust. J. Dairy Technol. 57: 92-96.
  55. Maubois, J. L. and G. Ollivier. 1992. New Applications of Membrane Processes. IDF Spl. Iss. 9201. Brussels, Belgium. pp. 15-22.
  56. Maubois, J. L., A. Pierre, J. Fauquant, and M. Piot. 1987. Industrial fractionation of the main whey proteins. IDF Bulletin 212. Brussels, Belgium. Pp. 154-159.
  57. Maubois, J. L., G. Mocquot and L. Vassal. 1969. A method for processing milk and dairy products. French Patent. FR 2 052121.
  58. Maubois, J. L., J. Fauquant, M. H. Famelart, and F. Caussin. 2001. Milk microfiltrate a convenient starting material for fractionation of whey proteins and derivatives. In: Proc. 3rd Int Whey Conf. The importance of whey and whey components in food and nutrition. Munchen. Germany. pp. 59-72.
  59. Meersohn, M. 1989. Nitrate-free cheese making with the Bactocatch. North Eur. Food Dairy J. 55:108-113.
  60. Mehara, R. K. and W. J. Donnely. 1993. Fractionation of whey protein components through a large pore size, hydrophilic, cellulosic membrane. J. Dairy Res. 60:89-97. https://doi.org/10.1017/S0022029900027370
  61. Mistry, V. V. and J. L. Maubois. 1993. Application of membrane separation technology to cheese production. In: Cheese: Chemistry, Physics and Microbiology (Ed. P. F. Fox). Chapman & Hall: London, 493-522.
  62. Morr, C. V. and E. Y. W. Ha. 1993. Whey protein concentratesand isolates: processing and functional properties. Crit. Rev. Food Sci. Nutr. 33: 431- 476. https://doi.org/10.1080/10408399309527643
  63. Mulvihill, D. M. 1992. Production, functional properties and utilization of milk protein products. In: Advanced Dairy Chemistry Volume I. (Ed. P. F. Fox). Chapman and Hall. 369- 404.
  64. Murphy, J. M. and P. F. Fox. 1990. Fractionation of sodium caseinate by ultrafiltration. Food Chem. 39:27-38.
  65. Neocleous, M., D. M. Barbano, and M. A. Rudan. 2002. Impact of low concentration factor microfiltration on the composition and aging of Cheddar cheese. J. Dairy Sci. 85:2425-2437. https://doi.org/10.3168/jds.S0022-0302(02)74325-7
  66. Novak, A. 1992. New applications of membrane processes. IDF Spl Iss 9201 Brussels, Belgium. pp. 51-66.
  67. Olesen, N. and F. Jensen. 1989. Microfiltration. The influence of operating parameters on the process. Milchwissenschaft 44: 476-479.
  68. Ostergaard, B. 2003. Adding value to whey by Pro-Frac. Eur. Dairy Mag. 8:20-22.
  69. Ottosen, N. and P. Konigsfeldt. 1999. Microfiltration of cheese brine. Preliminary, APV Nordic, Membrane Filtration, Silkeborg. Denmark.
  70. Pafylias, I., M. Cheryan, M. A. Mehaiab, and N. Saglam. 1996. Microfiltration of milk with ceramic membranes. Food Res. Intl. 29:141-146. https://doi.org/10.1016/0963-9969(96)00007-5
  71. Papadatos, A., M. Neocleous, A. M. Berger, and D. M. Barbano. 2003. Economic feasibility evaluation of microfiltration of milk prior to cheesemaking. J. Dairy Sci. 86:1564-1577. https://doi.org/10.3168/jds.S0022-0302(03)73742-4
  72. Pearce, R. J. 1987. Fractionation of whey proteins. Aust. J. Dairy Technol. 42:75-78.
  73. Pedersen, P. J. 1992. New applications of membrane processes. IDF Spl Iss-9201, Brussels, Belgium.pp. 33-50.
  74. Pedersen, P. J. and N. Ottosen. 1992. New Applications of Membrane Processes. IDF Spl Iss 9201. Brussels, Belgium. pp. 67-76.
  75. Perraudin, J. P. 1991. Biologically active proteins. Recently acquired knowledge and separation technology. Lait 71:191-211. https://doi.org/10.1051/lait:1991215
  76. Pettipher, G. L. 1982. Developments in assessing milk quality Use of membrane filtration for assessing the hygienic quality of milk and milk products. Int. J. Dairy Technol. 35:59-63. https://doi.org/10.1111/j.1471-0307.1982.tb02715.x
  77. Pierre, A., J. Fauquant, Y. Le Graet, M. Piot, and J. L. Maubois. 1992. Preparation de phosphocaseinate natif par microfiltration sur membrane. Lait 72:461-474. https://doi.org/10.1051/lait:1992534
  78. Piot, M., J. C. Vachot, M. Veaux, J. L. Maubois, and G. E. Brinkman. 1987. Encremage et epuration bacteri-enne du lait entier cru par microfiltration sur membrane en flux tangentiel. Tech. Laitiere Marketing. 1016:42-46.
  79. Piot, M., J. Fauquant, M. N. Madec, and J. L. Maubois. 2004. Preparation of serocolostrum by membrane microfiltration. Lait 84:333-341. https://doi.org/10.1051/lait:2004011
  80. Piry, A., W. Kuhn, T. Grein, A. Tolkach, S. Ripperger, and U. Kulozik. 2008. Length dependency of flux and protein permeation in crossflow microfiltration of skimmed milk. J. Memb. Sci. 325:887-894. https://doi.org/10.1016/j.memsci.2008.09.025
  81. Popovic, S., M. Djuric, S. Milanovic, M. N. Tekic, and N. Lukic. 2010. Application of an ultrasound field in chemical cleaning of ceramic tubular membrane fouled with whey proteins. J. Food Eng. 101:296-302. https://doi.org/10.1016/j.jfoodeng.2010.07.012
  82. Pouliot, M., Y. Pouliot, and M. Britten. 1996. On the conventional cross-flow microfiltration of skim milk for the production of native phosphocaseinate. Int. Dairy J. 6:105-111. https://doi.org/10.1016/0958-6946(94)00046-8
  83. Pouliot, Y. 2008. Membrane processes in dairy technology-From a simple idea to worldwide panacea. Int. Dairy J. 18:735-740. https://doi.org/10.1016/j.idairyj.2008.03.005
  84. Puhan, Z. 1992. New applications of membrane processes. IDF Spl Iss 9201 Brussels, Belgium. pp. 23-32.
  85. Quinones, H. J., D. M. Barbano, and L. G. Phillips. 1997. Influence of protein standardization by ultrafiltration on the viscosity, colour, and sensory properties of skim and 1% milk. J. Dairy Sci. 80:3142-3151. https://doi.org/10.3168/jds.S0022-0302(97)76285-4
  86. Qvist, K. B. 1987. Objective and sensory assessment of texture of danbo cheese made from milk concentrated 2-fold using ultrafiltration. 272, Beretning/ Statens Mejeriforsog, Hillerod, Denmark.
  87. Rattray, W. and P. Jelen. 1996. Freezing point and sensory quality of skim milk as affected by addition of ultrafiltration permeates for protein standardization. Int. Dairy J. 6:569-579. https://doi.org/10.1016/0958-6946(95)00062-3
  88. Regester, G. O., D. A. Belford, R. J. West, and C. Goddard. 2003. Development of minor dairy components as therapeutic agents-Whey growth factor extract, a case study. Aust. J. Dairy Technol. 58:104-106.
  89. Rigo, J., G. Boehm, G. Georgi, J. Jelinek, K. Nyambugabo, G. Sawatzki, and F. Studzinski. 2001. An infant formula free of glycomacropeptide prevents hyperthreoninemia in formula-fed preterm infants. J. Pediatr. Gastroenterol. Nutr. 32:127-130. https://doi.org/10.1097/00005176-200102000-00006
  90. Rosenberg, M. 1995. Current and future applications of membrane processes in the dairy industry. Trends Food Sci. Technol. 6: 12-19. https://doi.org/10.1016/S0924-2244(00)88912-8
  91. Rysstad, R. and J. Kolstad. 2006. Extended shelf life milk-advances in technology. Int. J. Dairy Technol. 59:85-96. https://doi.org/10.1111/j.1471-0307.2006.00247.x
  92. Saboya, L. V. and J. L. Maubois. 2000. Current developments of microfiltration technology in the dairy industry. Lait 80:541-553. https://doi.org/10.1051/lait:2000144
  93. Saxena, A., B. P. Tripathi, M. Kumar, and V. K. Shahi. 2009. Membrane-based techniques for the separation and purification of proteins: An overview. Adv. Colloid Interface Sci. 145:1-22. https://doi.org/10.1016/j.cis.2008.07.004
  94. Schafroth, K., C. Fragniere, and H. P. Bachmann. 2005. Herstellung von Kase aus microfiltrierter. konzentrierter Milch. Deutsche Milchwirtschaft. 56:861-863.
  95. Scott, G. H. and D. O. Lucas. 1989. Immunologically active whey fraction and recovery process. US. Patent 4,834,874.
  96. Sharma, N. and S. K. Maiti. 2010. Incidence, etiology and antibiogram of sub clinical mastitis in cows in durg, Chhattisgarh. Ind. J. Vet. Res. 19:45-54.
  97. Sharma, N., A. K. Srivastava, G. Bacic, D. K. Jeong, and R. K. Sharma. 2012b. Epidemiology. In: Bovine mastitis. 1st edn. Satish serial publishing house, Delhi, India. pp: 231-312.
  98. Sharma, N., G. J. Rho, Y. H. Hong, T. Y. Kang, H. K. Lee, T. Y. Hur, and D. K. Jeong. 2012a. Bovine mastitis: An Asian Perspective. Asian J. Anim. Vet. Adv. 7:454-476. https://doi.org/10.3923/ajava.2012.454.476
  99. Sharma, N., N. K. Singh, and M. S. Bhadwal. 2011. Relationship of Somatic Cell Count and Mastitis: An Overview. Asian-Aust. J. Anim. Sci. 24:429-438. https://doi.org/10.5713/ajas.2011.10233
  100. Shekhar, C. and S. Kumar. 2011. Quality of buffalo milk procured from milk vendors- a case study. Ind. J. Anim. Res. 45:223-225.
  101. Shekhar, C., E. Motina, and S. Kumar. 2010. Microbiological quality of raw milk and its public health significance. J. Dairying Foods Home Sci. 29:15-18.
  102. Siebert, J. W., L. Alejandro, and K. Sung-Yong. 2001. The commercial potential of new dairy products from membrane technology. J. Food Distrib. Res. 3:24-33.
  103. Sienkiewicz, T. and C. L. Riedel. 1990. Whey and whey utilization. 2nd Ed., Verlag Th. Mann, Gelsenkirchen-Buer. Germany.
  104. Stack, A. and G. Sillen. 1998. Bactofugation of liquid milks. Nutr. Food Sci. 98:280-282. https://doi.org/10.1108/00346659810224217
  105. Tang, X., S. H. Fint, J. D. Brooks, and R. J. Bennett. 2009. Factors affecting the attachment of micro-organisms isolated from ultrafiltration and reverse osmosis membranes in dairy processing plants. J. Appl. Microbiol. 107:443-451. https://doi.org/10.1111/j.1365-2672.2009.04214.x
  106. Vadi, P. K. and S. S. H. Rizvi. 2001. Experimental evaluation of a uniform transmembrane pressure crossflow microfiltration unit for the concentration of micellar casein from skim milk. J. Memb. Sci. 189:69-82. https://doi.org/10.1016/S0376-7388(01)00396-9
  107. Van der Horst, H. C., J. M. K. Timmer, T. Robbertson, and J. Leenders. 1995. Use of nanofiltration for concentration and demineralization in the dairy industry: Model for mass transport. J. Memb. Sci. 104:205-218. https://doi.org/10.1016/0376-7388(95)00041-A
  108. Van Leeuwen, J., H. Freeman, J. Sutherland, and W. Jameson. 1987. European Patent WP 0 120 879 B1.
  109. Van Reis, R. and A. L. Zydney. 2007. Bioprocess membrane technology. J. Memb. Sci. 297:16-50. https://doi.org/10.1016/j.memsci.2007.02.045
  110. Van Rijn, C. J. and J. Kromkamp. 2001. Method for filtering milk. WO Patent 0209527.
  111. Visvanathan, C. and R. Ben. 1989. Aim, application of an electric field for the reduction of particle and colloidal fouling in cross flow microfiltration. Sep. Sci. Technol. 24:383-398. https://doi.org/10.1080/01496398908049776
  112. Vourch, M., B. Balannec, B. Chaufer, and G. Dorange 2005. Nanofiltration and reverse osmosis of model process waters from the dairy industry to produce water for reuse. Desalination 172:245-256. https://doi.org/10.1016/j.desal.2004.07.038
  113. Wakeman, R. J. and C. J. Williams. 2002. Additional techniques to improve microfiltration. Sep. Purif. Technol. 26:3-18. https://doi.org/10.1016/S1383-5866(01)00112-5
  114. Winston Ho, W. S. and K. K. Sirkar. 1992. In: Membrane Handbook (Ed. W. S. Winston Ho and K. K. Sirkar). Van Nostrand Reinhold, 3-16.

피인용 문헌

  1. Demineralisation of whey by a combination of nanofiltration and anion-exchange treatment: a preliminary study vol.68, pp.4, 2015, https://doi.org/10.1111/1471-0307.12283
  2. Concentration of contaminated single-phase detergents by means of unit and integrated membrane processes vol.51, pp.7, 2016, https://doi.org/10.1080/01496395.2016.1146298
  3. Algal Proteins: Extraction, Application, and Challenges Concerning Production vol.6, pp.5, 2017, https://doi.org/10.3390/foods6050033
  4. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes vol.6, pp.2, 2018, https://doi.org/10.1039/C7TA08627J
  5. Flux and transmission of β-casein during cold microfiltration of skim milk subjected to different heat treatments pp.00220302, 2018, https://doi.org/10.3168/jds.2018-14496
  6. Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation vol.41, pp.13, 2018, https://doi.org/10.1002/jssc.201701457
  7. Development of Fourier-transformed mid-infrared spectroscopy prediction models for major constituents of fractions of delactosated, defatted milk obtained through ultra- and nanofiltration vol.101, pp.8, 2018, https://doi.org/10.3168/jds.2017-14343
  8. Membrane Processing in the Sustainable Production of Low-Sugar Apple-Cranberry Cloudy Juice vol.8, pp.7, 2018, https://doi.org/10.3390/app8071082
  9. Design Considerations for Artificial Water Channel–Based Membranes vol.48, pp.1, 2018, https://doi.org/10.1146/annurev-matsci-070317-124544
  10. The case for milk protein standardisation using membrane filtration for improving cheese consistency and quality vol.71, pp.2, 2018, https://doi.org/10.1111/1471-0307.12502
  11. A Raman-spectroscopy-based approach for detection and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages at low titer in raw milk vol.63, pp.5, 2013, https://doi.org/10.1007/s12223-018-0604-5
  12. Advances in Infant Formula Science vol.10, pp.1, 2013, https://doi.org/10.1146/annurev-food-081318-104308
  13. An Investigation on the Application of Pulsed Electrodialysis Reversal in Whey Desalination vol.20, pp.8, 2013, https://doi.org/10.3390/ijms20081918
  14. Ripening of Hard Cheese Produced from Milk Concentrated by Reverse Osmosis vol.8, pp.5, 2013, https://doi.org/10.3390/foods8050165
  15. Advantages and Disadvantages of Partial High Pressure Homogenisation of Milk in Relation to Full-Stream Homogenisation vol.69, pp.3, 2013, https://doi.org/10.31883/pjfns/109987
  16. Reduction of energy demand during ultrafiltration of goat’s milk vol.207, pp.None, 2013, https://doi.org/10.1051/e3sconf/202020701016
  17. Optimization of energy demand during ultrafiltration of cow’s milk with different membranes vol.207, pp.None, 2020, https://doi.org/10.1051/e3sconf/202020701017
  18. Production of probiotic Bulgarian yoghurts obtained from an ultrafiltered cow’s milk vol.59, pp.1, 2013, https://doi.org/10.2478/ijafr-2020-0001
  19. Selective enrichment of milk fat globules using functionalized polyvinylidene fluoride membrane vol.50, pp.1, 2013, https://doi.org/10.1080/10826068.2019.1658117
  20. Can Drinking Microfiltered Raw Immune Milk From Cows Immunized Against SARS-CoV-2 Provide Short-Term Protection Against COVID-19? vol.11, pp.None, 2020, https://doi.org/10.3389/fimmu.2020.01888
  21. The use of bacteriophages to control and detect pathogens in the dairy industry vol.73, pp.1, 2013, https://doi.org/10.1111/1471-0307.12641
  22. A Review on Current Development of Membranes for Oil Removal from Wastewaters vol.10, pp.4, 2020, https://doi.org/10.3390/membranes10040065
  23. Production of Liquid Milk Protein Concentrate with Antioxidant Capacity, Angiotensin Converting Enzyme Inhibitory Activity, Antibacterial Activity, and Hypoallergenic Property by Membrane Filtration a vol.8, pp.7, 2013, https://doi.org/10.3390/pr8070871
  24. Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants vol.9, pp.9, 2013, https://doi.org/10.3390/biology9090253
  25. Impact of MWCO and Dopamine/Polyethyleneimine Concentrations on Surface Properties and Filtration Performance of Modified Membranes vol.10, pp.9, 2013, https://doi.org/10.3390/membranes10090239
  26. Integrating Pressure-Driven Membrane Separation Processes to Improve Eco-Efficiency in Cheese Manufacture: A Preliminary Case Study vol.10, pp.10, 2013, https://doi.org/10.3390/membranes10100287
  27. IN NATURAovine whey proteins concentration by ultrafiltration combining batch and diafiltration operating modes vol.43, pp.12, 2013, https://doi.org/10.1111/jfpe.13554
  28. Recent Insights Into Processing Approaches and Potential Health Benefits of Goat Milk and Its Products: A Review vol.8, pp.None, 2013, https://doi.org/10.3389/fnut.2021.789117
  29. Protein recovery as a resource from waste specifically via membrane technology-from waste to wonder vol.28, pp.8, 2021, https://doi.org/10.1007/s11356-020-12290-x
  30. Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides-A Review vol.11, pp.3, 2013, https://doi.org/10.3390/app11031078
  31. Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals vol.26, pp.5, 2013, https://doi.org/10.3390/molecules26051306
  32. Performance of Single and Two-Stage Cross-Flow Ultrafiltration Membrane in Fractionation of Peptide from Microalgae Protein Hydrolysate (Nannochloropsis gaditana) vol.9, pp.4, 2021, https://doi.org/10.3390/pr9040610
  33. Hydraulic Resistance and Protein Fouling Resistance of a Zirconia Membrane with a Tethered PVP Layer vol.13, pp.7, 2021, https://doi.org/10.3390/w13070951
  34. Effect of low-frequency pulsatile crossflow microfiltration on flux and protein transmission in milk protein fractionation vol.56, pp.6, 2013, https://doi.org/10.1080/01496395.2020.1749080
  35. The Brown Seaweeds of Scotland, Their Importance and Applications vol.8, pp.6, 2013, https://doi.org/10.3390/environments8060059
  36. Selective Adsorption and Separation of Proteins by Ligand-Modified Nanofiber Fabric vol.13, pp.14, 2021, https://doi.org/10.3390/polym13142313
  37. The effect of ultrafiltration on the acid gelation properties of protein-standardised skim milk systems vol.146, pp.None, 2013, https://doi.org/10.1016/j.foodres.2021.110432
  38. Macroalgae as Protein Sources-A Review on Protein Bioactivity, Extraction, Purification and Characterization vol.11, pp.17, 2013, https://doi.org/10.3390/app11177969
  39. Calcium: A comprehensive review on quantification, interaction with milk proteins and implications for processing of dairy products vol.20, pp.6, 2013, https://doi.org/10.1111/1541-4337.12844
  40. Whey: Review. Part 2. Treatment Processes and Methods vol.57, pp.6, 2013, https://doi.org/10.3103/s1068375521060119
  41. Case Study on the Microbiological Quality, Chemical and Sensorial Profiles of Different Dairy Creams and Ricotta Cheese during Shelf-Life vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112722
  42. Use of Membrane Technologies in Dairy Industry: An Overview vol.10, pp.11, 2013, https://doi.org/10.3390/foods10112768
  43. Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing vol.8, pp.11, 2013, https://doi.org/10.3390/photonics8110498
  44. Electrochemical separation of organic acids and proteins for food and biomanufacturing vol.178, pp.None, 2022, https://doi.org/10.1016/j.cherd.2021.12.009