DOI QR코드

DOI QR Code

Thickness Dependence of Amorphous CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy

비정질 강자성체 CoSiB/Pd 다층박막의 두께에 따른 수직자기이방성 변화

  • Yim, H.I. (Department of Physics, Sookmyung Women's University)
  • Received : 2013.06.18
  • Accepted : 2013.08.20
  • Published : 2013.08.31

Abstract

Perpendicular magnetic anisotropy (PMA) is the phenomenon of magnetic thin film which is preferentially magnetized in a direction perpendicular to the film's plane. Amorphous multilayer with PMA has been studied as the good candidate to realization of high density STT-MRAM (Spin Transfer Torque-Magnetic Random Access Memory). The current issue of high density STT-MRAM is a decrease in the switching current of the device and an application of amorphous materials which are most suitable devices. The amorphous ferromagnetic material has low saturated magnetization, low coercivity and high thermal stability. In this study, we presented amorphous ferromagnetic multilayer that consists of an amorphous alloy CoSiB and a nonmagnetic material Pd. We investigated the change of PMA of the $[CoSiB\;t_{CoSiB}/Pd\;1.3nm]_5$ multilayer ($t_{CoSiB}$ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 nm, and $t_{Pd}$ = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 nm) and $[CoSiB\;0.3nm/Pd\;1.3nm]_n$ multilayer (n = 3, 5, 7, 9, 11, 13). This multilayer is measured by VSM (Vibrating Sample Magnetometer) and analyzed magnetic properties like a coercivity ($H_c$) and a magnetization ($M_s$). The coercivity in the $[CoSiB\;t_{CoSiB}\;nm/Pd\;1.3nm]_5$ multi-layers increased with increasing $t_{CoSiB}$ to reach a maximum at $t_{CoSiB}$ = 0.3 nm and then decreased for $t_{CoSiB}$ > 0.3 nm. The lowest saturated magnetization of $0.26emu/cm^3$ was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_3$ multilayer whereas the highest coercivity of 0.26 kOe was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_5$ mutilayer. Additional Pd layers did not contribute to the perpendicular magnetic anisotropy. The single domain structure evolved in to a striped multi-domain structure as the bilayer repetition number n was increased above 7 after which (n > 7) the hysteresis loops had a bow-tie shapes.

비정질 합금인 CoSiB과 비자성체 Pd을 이용하여 CoSiB/Pd 다층박막을 제작하고, 그 자기적인 특성을 분석하였다. $[CoSiB\;t_{CoSiB}/Pd\;1.3nm]_5$ 다층박막을 $t_{CoSiB}$ = 0.1~0.6 nm의 범위로 제작하였고, 동일한 방법으로 $[CoSiB\;0.3nm/Pd\;t_{Pd}]_5$ 다층박막을 $t_{Pd}$ = 1.0~1.6 nm의 범위로 제작하여 두께에 따른 자기이방성과 포화자화도를 측정하였다. CoSiB 두께가 증함에 따라 포화자화도가 증가하는 경향을 보였는데, 특히 CoSiB의 두께가 0.2~0.3 nm 일 때 포화자화도가 급격하게 증가하였다. 보자력은 두께 0.2 nm 에서 최대값을 보이다가 두께가 증가함에 따라 점차 감소하는 것을 확인하였다. Pd의 두께 변화 실험에서는 포화자화도는 1.1~1.2 nm 구간에서 약간 감소하다가 1.3 nm 이후 점차 증가하였으며, 보자력은 포화자화도에 비해 확연한 규칙성을 보이지 않았으나, 전체적으로 Pd의 두께가 증가함에 따라 값이 감소하는 것을 알 수 있었다.

Keywords

References

  1. F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988). https://doi.org/10.1103/PhysRevLett.60.2769
  2. G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 50, 9989 (1994). https://doi.org/10.1103/PhysRevB.50.9989
  3. S.-I. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975). https://doi.org/10.1109/TMAG.1975.1058930
  4. J. F. Weaver, A. F. Carlsson, and F. J. Madix, Surf. Sci. Rep. 50, 107 (2003). https://doi.org/10.1016/S0167-5729(03)00031-1
  5. N. Nishiura, T. Hirai, A. Koganei, T. Ikeda, K. Okant, Y. Sekiguchi, and Y. Osada, J. Appl. Phys. 91, 5246 (2002). https://doi.org/10.1063/1.1459605
  6. G. H. O. Daalderop, P. J. Kelly, and F. J. A. den Broeder, Phys. Rev. Lett. 68, 682 (1992). https://doi.org/10.1103/PhysRevLett.68.682
  7. J. Y. Hwang, S. S. Kim, and J. R. Rhee, J. Magn. Magn. 310, 1943 (2007). https://doi.org/10.1016/j.jmmm.2006.10.816
  8. J. Y. Hwang. J. S. Park, H. I. Yim, T. W. Kim, and S. B. Lee, in Perpendicular Magnetic Anisotropy in Amorphous Ferromagnetic CoSiB/Pt Multilayers, Nano Korea 2009 (PNM188, KINTEX, Goyang, Korea, August 27, 2009).
  9. J.-H. Park, C. Part, T. Jeong, M. T. Moneck, M. T. Nufer, and J.-G. Zhu, J. Appl. Phys. 103, 07A917 (2008). https://doi.org/10.1063/1.2838754
  10. S. Jeong and H. I. Yim, J. Kor. Phys. Soc. 60, 450 (2011).
  11. J. Carrey, A. E. Berkowitz, W. F. Egelhoff, Jr., and D. J. Smith, Appl. Phys. Lett. 83, 5259 (2003). https://doi.org/10.1063/1.1635660
  12. V. W. Gue, H.-S. Hee, Y. Luo, M. T. Moneck, and J.-G. Zhu, IEEE Trans. Magn. 45, 2686 (2009). https://doi.org/10.1109/TMAG.2009.2018640
  13. B. Window and G. L. Hearding, J. Vac. Sci. Technol. A4, 996 (1986).
  14. D. Weller, L. Folks, M. Best, E. E. Fullerton, B. D. Terris, G. J. Kusinski, K. M. Krichnan, and G. Thomas, J. Appl. Phys. 89, 7525 (2001). https://doi.org/10.1063/1.1363602
  15. G. A. Bereto and R. Sinclair, J. Magn. Magn. Mater. 134, 173 (1994). https://doi.org/10.1016/0304-8853(94)90089-2