DOI QR코드

DOI QR Code

선분분류를 이용한 실내영상의 소실점 추출

Vanishing Points Detection in Indoor Scene Using Line Segment Classification

  • 투고 : 2013.03.19
  • 심사 : 2013.07.02
  • 발행 : 2013.08.31

초록

본 논문에서는 선분분류를 이용하여 실내영상의 소실점을 검출하는 방법을 제안한다. 실내영상을 효율적으로 검출하기 위하여 2 단계로 소실점을 추출한다. 1 단계에서는 이미지가 1 점 투시인지 2 점 투시인지 판별한다. 만일 이미지가 2 점 투시이면, 선분분류를 위하여 검출된 소실점을 지나는 수평선을 구한다. 2 단계에서는 선분분류를 이용하여 2 개의 소실점을 정확히 검출한다. 또 본 논문에서는 인공영상과 이미지 DB를 이용하여 제안한 방법을 평가하였다. 노이즈를 첨가한 인공 영상에 대해서는 노이즈가 60%를 차지할 때까지 검출한 소실점과 실제 소실점과의 차이가 16 픽셀 이하였다. A. Quattoni 와 A. Torralba가 제안한 이미지 DB를 이용한 평가에서는 87% 이상의 이미지에 대하여 소실점을 검출하였다.

This paper proposes a method to detect vanishing points of an indoor scene using line segment classification. Two-stage vanishing points detection is carried out to detect vanishing point in indoor scene efficiently. In the first stage, the method examines whether the image composition is a one-point perspective projection or a two-point one. If it is a two-point perspective projection, a horizontal line through the detected vanishing point is found for line segment classification. In the second stage, the method detects two vanishing points exactly using line segment classification. The method is evaluated by synthetic images and an image DB. In the synthetic image which some noise is added in, vanishing point detection error is under 16 pixels until the percent of the noise to the image becomes 60%. Vanishing points detection ratio by A.Quattoni and A.Torralba's image DB is over 87%.

키워드

참고문헌

  1. M. G. Hwang, D. M. Kim, and D. H. Har, "Extraction of Subject Size in Still Image Using Floor Pattern," The Journal of the Korea Contents Association, Vol.11, No.4, pp.11-17, 2011. https://doi.org/10.5392/JKCA.2011.11.4.011
  2. C. H. Han, H. C. Choi, and S. W. Lee, "Adaptive Depth Fusion based on Reliability of Depth Cues for 2D-to-3D Video Conversion," The Journal of the Korea Contents Association, Vol.12, No.12, pp.1-13, 2012. https://doi.org/10.5392/JKCA.2012.12.12.001
  3. H. P. Le, K. Madhubalan, and G. S. Lee, "Rectification of Perspective Text Images on Rectangular Planes," International Jouranal of Contents, Vol.6, No.4, pp.1-7, 2010. https://doi.org/10.5392/IJoC.2010.6.4.001
  4. B. Li, K. Peng, X. Ying, and H. Zha, "Vanishing point detection using cascaded 1D Hough Transform from single images," Pattern Recognition Letters, Vol.33, No.1, pp.1-8, 2012(1). https://doi.org/10.1016/j.patrec.2011.09.027
  5. X. C. Yin, H. W. Hao, J. Sun, and S. Naoi, "Robust Vanishing Point Detection for MobileCam-Based Documents," 2011 International Conference on Document Analysis and Recognition, pp.136-140, 2011(9).
  6. M. Kalantari, F. Jung, and J. Guedon, "Precise, automatic and fast method for vanishing point detection," The Photogrammetric Record, Vol.24, No.127, pp.246-263, 2009(9). https://doi.org/10.1111/j.1477-9730.2009.00542.x
  7. D. Gerogiannis, C. Nikou, and A. Likas, "Fast and efficient vanishing point detection in indoor images," 2012 21st International Conference on Pattern Recognition, pp.3244-3247, 2012(11).
  8. http://issuu.com/ma-cq/docs/final_rep_yu_srinath?workerAddress=ec2-23-23-3-82.compute-1.amazo naws.com
  9. C. Akinlar and C. Topal, "EDLines: A real-time lines segment detector with a false detection control," Pattern Recognition Letters, Vol.32, No.13, pp.1633-1642, 2011. https://doi.org/10.1016/j.patrec.2011.06.001
  10. http://web.mit.edu/torralba/www/indoor.html
  11. V. Cantoni, L. Lombardi, M. Porta, and N. Sicard, "Vanishing Point Detection: Representation Analysis and New Approaches," 11th International Conference on Image Analysis and Processing, pp.90-94, 2001(9).
  12. A. Almansa, A. Desolneux, and S. Vamech, "Vanishing point detection without any a priori information," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.25, No.4, pp.502-507, 2003(4). https://doi.org/10.1109/TPAMI.2003.1190575
  13. M. Nieto and L. Salgado, "Simultaneous estimation of vanishing points and their converging lines using the EM algorithm," Pattern Recognition Letters, Vol.32, No.14, pp.1691-1700, 2011(10). https://doi.org/10.1016/j.patrec.2011.07.018
  14. G. Schindler and F. Dellaert, "Atlanta World: An Expectation Maximization Framework for Simultaneous Low-level Edge Grouping and Camera Calibration in Complex Man-made Environments," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vol.1, pp.203-209, 2004.
  15. A. Minagawa, N. Tagawa, T. Moriya, and T. Gotoh, "Vanishing Point and Vanishing Line Estimation with Line Clustering," IEICE Transactions on Information and Systems, Vol.E83-D, No.7, pp.1574-1582, 2000(7).
  16. C. Rother, "A new approach to vanishing point detection in architectural environments," Image and Vision Computing, Vol.20, No.9-10, pp.647-655, 2002(8). https://doi.org/10.1016/S0262-8856(02)00054-9
  17. X. Chen, R. Jia, H. Ren, and Y. Zhang, "A New Vanishing Point Detection Algorithm Based on Hough Transform," 2010 Third International Joint Conference on Computational Science and Optimization, Vol.2, pp.440-443, 2010(5).