
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1989

Copyright ⓒ 2013 KSII

The part of this work was presented in 7th International Conference on Communications and Networking in China.

There are more than 30 percent substantial new contributions added in the manuscript. This research was supported

by by the National Natural Science Foundations of China (No.60970140) and (No.61161140454) and China

Postdoctoral Science Foundation(2011M500416,2012T50152). The authors would like to thank the editor and all

the anonymous reviewers for their useful suggestion.

http://dx.doi.org/10.3837/tiis.2013.08.014

RPFuzzer: A Framework for Discovering
Router Protocols Vulnerabilities Based on

Fuzzing

Zhiqiang Wang
1
, Yuqing Zhang

1,2
 and Qixu Liu

2

1 State Key Laboratory of Integrated Services Networks, Xidian University

Shaanxi Xi’an - P.R. China

[e-mail: wangzq@nipc.org.cn]
2 National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences

Beijing - P.R. China

 [e-mail: zhangyq@gucas.ac.cn]

*Corresponding author: Yuqing Zhang

Received December 27, 2012; revised February 20, 2013; accepted June 6, 2013; published August 30, 2013

Abstract

How to discover router vulnerabilities effectively and automatically is a critical problem to

ensure network and information security. Previous research on router security is mostly about

the technology of exploiting known flaws of routers. Fuzzing is a famous automated

vulnerability finding technology; however, traditional Fuzzing tools are designed for testing

network applications or other software. These tools are not or partly not suitable for testing

routers. This paper designs a framework of discovering router protocol vulnerabilities, and

proposes a mathematical model Two-stage Fuzzing Test Cases Generator(TFTCG) that

improves previous methods to generate test cases. We have developed a tool called RPFuzzer

based on TFTCG. RPFuzzer monitors routers by sending normal packets, keeping watch on

CPU utilization and checking system logs, which can detect DoS, router reboot and so on.

RPFuzzer’ debugger based on modified Dynamips, which can record register values when an

exception occurs. Finally, we experiment on the SNMP protocol, find 8 vulnerabilities, of

which there are five unreleased vulnerabilities. The experiment has proved the effectiveness of

RPFuzzer.

Keywords: router security, fuzzing, TFTCG, protocol vulnerability discovering

1990 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

1. Introduction

Router is one of key devices to connect network in the Internet world, whose security plays a

crucial role. The research on finding router bugs has been a hot area for several years. Since

Felix Linder, a member of the hacker organization Phenoelit, attacked Cisco routers with

routing & tunneling protocol in 2001 [1], research and attacks on router security have become

one kind of new tendency. In 2005, Michael Lynn, a security researcher, presented a

vulnerability concerned handling of IPv6 packets at the Black Hat conference [2], informally

known as “Cisco gate”. With his findings, attackers are allowed to execute arbitrary code

remotely. Hereafter, the security of routers is increasingly focused on. At the 2008 DEFCON

Conference, security expert Alex Pilosov and Tony Kapela demonstrated an attack on BGP [3],

the core Internet routing protocol, which created a big stir among the industry and academia.

Moreover, some vendors and individuals developed Cisco IOS debugging tools, for example,

GNU debugger of IRM PLC from England [4] and modified Dynamips of Groundworks

Technologies [5], with which it is more favorable for router attacks.

According to U.S. National Vulnerability Database (NVD) [6] statistics, the prevalence of

router vulnerabilities is growing up shown in Fig. 1, and the proportion of vulnerabilities’

severity is shown in Fig. 2. Take Cisco routers as an example, there are 1056 vulnerabilities on

Cisco routers as of December 31st, 2011, of which protocol vulnerabilities account for about

72%. Most of these vulnerabilities’ severities are medium or high. Thus, it can be seen that the

issue of router security is becoming more and more serious and has become an important

factor that affects Internet security. It’s imperative to do a lot of research on the technology

about discovering the vulnerabilities of routers in order to ensure network and information

security.

Fig. 1. The number of Cisco vulnerabilities

Although many security researchers and hackers have made remarkable progress in the

study of router security technology, there are still some problems to be solved as follows.

 Previous research on router security is mostly about the technology of exploiting known

flaws of routers or debugging routers. How to effectively and automatically discover

router vulnerabilities becomes an urgent problem to be solved, especially protocol

vulnerabilities. So far, none of existing frameworks is developed specially for testing

router protocols.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1991

Copyright ⓒ 2013 KSII

 Fuzzing is an effective automatic technique to find vulnerabilities. However, current

Fuzzing tools on network protocols are not or partly not suitable to testing router

protocols. These tools are developed to test network applications, whose methods of

monitoring and debugging targets are different from routers. In addition, single-Fuzzing

that mutates a single data sample or input variable is used in these tools, whose code

coverage is low and cannot find vulnerabilities resulted from the combination of multiple

input variables or samples.



Fig. 2. The proportion of Cisco router vulnerabilities’ severity

To solve the above problems, we have made a study on how to effectively find router

vulnerabilities. There are two points that should be stressed here. First, our research focuses on

the security of router protocols for the reason that protocol vulnerabilities account for the

greatest proportion of router vulnerabilities. Second, router protocols refer to not routing

protocols but all protocols supported by routers. The paper makes the following contributions:

 We design a general testing framework of router protocols to discover router

vulnerabilities. It is the first integral router protocol vulnerability discovering framework.

The framework is able to effectively test routers or other network devices.

 We propose a mathematical model Two-stage Fuzzing Test Cases Generator (TFTCG) to

generate test cases. TFTCG consists of two stages. In the first stage, generation-based

Fuzzing is combined with manual analysis and testing that analyze protocol weak points,

with which we can generate effectively test cases. In the second stage, mutation-based

multi-Fuzzing that mutates multiple data samples is used to generate test cases, of which

samples are got from historical vulnerability data and the abnormal test cases from the

first stage.

 We develop a tool called RPFuzzer, which is superior to previous network protocol

testing tools on the strategy of test case generation and the methods of monitoring and

debugging routers. RPFuzzer is developed based on the above framework and the model

TFTCG. The monitor of RPFuzzer uses three methods to monitor routers, including

sending normal test cases, keeping watch on CPU utilization of routers and checking

system logs, which can detect DoS vulnerabilities, router reboot, zombie process and so

on. RPFuzzer’s debugger is developed modified Dynamips [5] which can record register

values when an exception occurs that is helpful for researchers to prepare related

solutions to fix flaws.

The remainder of the paper is organized as follows. In section 2, we give a review of the

related work. Section 3 introduce a general way of discovering vulnerabilities on network

protocols and present our method in views of network protocols applied in router. Section 4

1992 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

describes the design and implementation of the router protocol vulnerability discovering

framework based on multi-Fuzzing. In section 5, we do some experiments on the SNMP

protocol. Experimental evaluations are discussed in section 6. Finally, conclusions and future

work are given.

2. Related Work

In the past decade, vulnerability discovering methods and related study on routers have been

advancing rapidly, and most research focuses on Cisco router. Felix Linder from Phenoelit

analyzes several IOS vulnerabilities and various exploitation techniques [7]. Michael Lynn

presented a technique to take control of an IOS-based router, which is achieved by means of a

buffer overflow or a heap overflow, two types of memory vulnerabilities [2]. Gyan

Chawdhary and Varun Uppal proposed a method to debug Cisco IOS and write shellcodes

with GNU debugger, which makes it easier to attack routers [4]. Felix Linder put forward an

exploit technique that uses fragments of code from the ROMMON for reliably exploiting

buffer overflows in Cisco routers [8][9], which solves a key problem of setting the return

address of shellcodes. A twostage attack strategy against Cisco IOS was presented by Ang Cui

et al, which can make two unique multi-stage shellcodes capable of reliable execution within a

large collection of IOS images on different hardware platforms [10]. Sebastian Muniz and

Alfredo Ortega presented a tool which facilitates debugging and reverse engineering process

of Cisco IOS by allowing the integration with most used existing debugging and disassembler

tools such as GDB and IDA Pro [11].

References [2] and [7] only lay stress on how to exploit two types of vulnerabilities.

References [4] and [11] put stress on how to debug routers. References [8] and [9] introduce

the method of writing shellcodes. Reference [10] makes Cisco IOS diversity not difficult to

reliably execute shellcodes. The above-mentioned references just emphasize how to take

advantage of known vulnerabilities, debug routers and write reliable shellcodes, none of which

puts forward a general framework how to discover router vulnerabilities effectively. Fuzzing

is a kind of software vulnerability mining technique and is able to find network protocols bugs

effectively, on which the research is relatively mature. Miller et al. [12] first introduced fuzz

testing that inserts fault data randomly into the input of UNIX system utilities using data

mutation. Reference [13] introduce the definition of Fuzzing, the methodology, intelligent

&unintelligent fuzzers, common Fuzzing problem(various types of validation) and application

behaviors. There are two forms of fuzzing program, namely generation-based and

mutation-based [12][13]. Mutation-based Fuzzing constructs test cases by mutating the fields

of a given and normal sample in advance. The efficiency of this method is low on account of

not considering the constraint relations between various input variables or vulnerable points.

Generation-based Fuzzing constructs test cases according to a specification which describes

the file format or network protocol [14]. Test cases constructed by this method are more valid

than that constructed by mutationbased Fuzzing, because the test cases are constructed on the

basis of the specification. However, automated testing for generation-based Fuzzing, which

need manual analysis to get the knowledge of of tested protocols or applications, is not as easy

as that for mutation-based Fuzzing. References [15] and [16] propose multipledimension

mutation and generation(m&g), which means mutating multiple input element or vulnerable

points at a time to form a test case. Multiple-dimension mutation and generation can

effectively find bugs caused by multiple vulnerable points.

At present, there are a lot of famous Fuzzing frameworks presently, such as SPIKE [17],

Peach [18], Sulley [19], Autodafe [20] and GPF [21], of which SPIKE, Peach and Sulley

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1993

Copyright ⓒ 2013 KSII

belong to semi-automatic tools, while Autodafe and GPF belong to automated tools. The

technology of automatic analysis on network protocols is still immature at present, namely the

semi-validity of generated test cases is still not high. So Autodafe and GPF are not as efficient

as automatic tools. So we just consider semi-automatic tools. SPIKE is a well-known Fuzzing

tool, which adopts generation-based strategy. It allows you to quickly create network protocol

stress testers. However, the number of test cases generated by SPIKE is small, and there is no

a monitor. Peach is a cross-platform Fuzzing framework, whose data generation strategy is

based on mutation with the analysis on tested protocols and known vulnerabilities called

knowledgebased Fuzzing technology. Similarly, Peach is deficient in effective monitoring

routers. Sulley is a fuzz testing framework consisting of multiple extensible components [22].

Different from previous fuzzers that solely focus on data generation, Sulley has not only

impressive data generation but also instruments and monitors the health of the target, capable

of reverting to a known good state using multiple methods, which improves automatic degree.

Nevertheless, Sulley’s monitor is partly applicable to routers and lacks a debugger, the method

of whose monitor adopts is monitoring the session between processes. Sulley’monitor may

missed exceptions that CPU utilization is less than 100%. Moreover, above tools only consider

Fuzz testing on a single data sample set or input variable [16], which leads to low code

coverage and the effect of mining vulnerabilities is not stable.

So far, there is not a well-rounded framework designed to discover vulnerabilities about

router protocols. Besides, generating test cases and monitoring tested targets are also needs to

be improved.

3. Methodology

In this section, the principle and process of network protocol testing based on Fuzzing is

introduced. Afterwards, our method is described in detail.

3.1 Fuzzing Test on Network Protocols

Fuzzing is a well-known black-box technique for the security testing of applications [22]. The

objective of Fuzzing test on network protocols is to test whether all kinds of network devices

or related applications have security vulnerabilities or not. The principle is to send malformed

testing data to targets through Socket APIs and monitor the exceptions appeared in targets

[14][16][22][23][24]. The testing procedure can be divided into five steps [22]. Firstly,

identify the target to be tested and get more details about the target. Secondly, identify inputs

and potential variables, such as headers, filenames, environment variables, etc. Then configure

targets preparing for testing. After generating Fuzzing data, we can execute Fuzzing data and

monitor for exceptions. Lastly, once finding a fault, it is necessary to determine whether the

bug discovered can be exploited.

3.2 Fuzzing Test on Router Protocols

Before taking a glimpse of our method, we firstly introduce single-Fuzzing and multi-Fuzzing.

Previous methods in section 2, applied in some Fuzzing tools such as Peach, Sulley, can only

be called single-Fuzzing that just considers a single sample data or mutates one field at a time

to generate a test case. Certain vulnerabilities can only be triggered by some special

combination of multi-dimensional input, so they will be missed by single-Fuzzing [16],

moreover, whose efficiency is not stable. Multi-Fuzzing that mutates multiple input variables

is first proposed in Reference [16], which adopts mutation-based multi-Fuzzing and genetic

1994 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

algorithm to mining soft vulnerabilities. However, the method in Reference [16] needs to

establish the relationships between input elements and insecure functions by static analysis on

the source code. It is inapplicable to test routers. In addition, this approach can take an

inordinately long time to generate valid data for protocols that contain TLV style fields [22]. In

our strategy, we just adopt multi-Fuzzing to mine vulnerabilities and make the efficiency of

discovering flaws stable, in other words, we find m bugs in a test and may find n bugs in

another test(m≠n).

The method that the paper proposes can be divided into two stages. The first stage adopts a

combination of manual analysis and testing and Fuzzing based on generation. The second

stage adopts multi-Fuzzing based on mutation with the sample data from the first stage and

historical vulnerability data. The flowchart of the method is shown in Fig. 3.

Manual Test
Generation-based

Fuzzing

Exceptions？

start

Test cases

Generation

Stop
No

End

Send test cases to

the target Router

Debug and

store sample

Malformed data

from Phase 1

Mutate

sample data

Exception？

Yes

Historical

known data

Debug and determine

its exploitability

Output

Test is over?

Yes

No

No

Send test cases to

the target Router

The first stage
The second stage

Yes

Yes

No

Fig. 3. The Flowchart of our method

The First Stage: With manual analysis and testing on router protocol and the cause of

related historical vulnerabilities where bugs may exist, we can gain lots of knowledge about

vulnerable points. Then, we generate test cases with generation-based Fuzzing based on

obtained knowledge. The generation of test cases in the first stage is shown in Fig. 4 (1).

Suppose a packet consists of 5 fields, and the vulnerable fields are Fields 2 and 4. We construct

test cases by replacing the vulnerable fields with malformed data and other fields with normal

data. When exceptions occur during testing routers, a debugger is invoked to debug

breakpoints and store malformed data that will be used in the second stage. Afterwards,

recover to be normal for continuing testing. The first stage use the incorporation of the two

methods we called knowledgebased Fuzzing, which can improve the semi-validity of test

cases and efficiency of testing.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1995

Copyright ⓒ 2013 KSII

Field 1

normal

Field 2

abnormal

Field 3

normal

Field 4

abnormal

Field 5

normal

Field 1 Field 2
Field 3

0000 0000

Field 4

0000 0000
Field 5Sample

(2)

Test case

(1)

Field 1 Field 2
Field 3

0000 0111

Field 4

0000 0101
Field 5

Fig. 4. Generation-based and mutation-based multi-Fuzzing

The Second Stage: Mutation-based multi-Fuzzing is used and the construction of test

cases is shown in Fig. 4(2). Before the mutation operation, a sample should be provided.

Suppose a sample consists of 5 fields, Fields 3(0000 0000) and 4(0000 0000) are the fields to

be mutated. Field 3 may be mutated into (0000 0111) and Field 4 may be mutated into (0000

0101). Mutation-based multi-Fuzzing means that we mutate two or more vulnerable points of

a sample at a time. The sample data is obtained from the first stage and historical data which

leads to abnormality of routers, the reason for which is that previous malformed values is

likely to trigger an old or new bug and multiple-dimension Fuzzing needs a variety of samples

to ensure stable efficiency. For example, suppose a string ”AAA...” can trigger a buffer

overflow vulnerability shown in Fig. 5, the string ”BBB...” might as well cause this bug. The

historical data is selected from NVD [6],CVE [25] and so on. The approach to select the

sample data not only enhances the code coverage [15] and but also improves the

vulnerabilities finding efficiency. Upon finding abnormal information, the debugger will be

called to debug the breakpoints and record debugging information. Then continue testing until

the test is over.

Variable var_1

Argument 1

RET

EBP

...

Variable var_2

...

Argument 2

AAAA

Argument 1

AAAA

AAAA

...

AAAA

...

Argument 2

BBBB

Argument 1

BBBB

BBBB

...

BBBB

...

Argument 2

Fig. 5. An example: a buffer overflow

3.3 TFTCG

To understand two-stage strategy of generating test cases above, we introduce a universal

mathematical system TFTCG, namely Two-stage Fuzzing Test Cases Generator. TFTCG is as

follows:

TFTCG = (F, MDB, G, SDB, M, OP, Result)

OP = {fuzz_generator, single_mutator, multi_mutator, CalChsum}

Result = {Testcases}

fun1: (F,C) × MDB→G

fun2: SDB × F→M

F, a vulnerable field set, F = {f1, f2, ..., fn}, fi denotes a weak field in network protocols, 1≤
i≤n, such as version, PDU type or source addresses, n is the number of fields.

1996 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

C, an attribute set of relative fields, C = {c1, c2, ..., cn}, ci denotes an attribute of ci field, 1

≤i≤n, such as field types, range of values.

MDB, a database of malformed data fragments, MDB = {M1, M2, ..., Mr}, Mi denotes a type

of malformed data in database MDB, 1≤i≤r, such as format string data.

G, a flag set of generation operations, G = (gij)nXr, gij = 0 or 1, 1≤i≤n, 1≤j≤r. When

gij = 1, it means that we will generate test cases with malformed data Mj at the field fi, 0 not.

SDB, a set of sample data, SDB = {Sα,Sβ} = { s1, s2, ...,sq }, q is the number of samples. Sα

denotes sample data from the first stage, and Sβ denotes sample data gathered from NVD, CVE

and so on.

M, a flag set of mutation operations, M = (mij)nXq, mij = 0 or 1, mij = 0 or 1, 1≤i≤n, 1

≤j≤q. When mij = 1, it means that we will mutate fi field of Sj randomly, 0 not.

OP, denotes a relative operations set. single_mutator and multi_mutator represent

single mutaion and multiple mutation respectively. fuzz generator represents generating test

cases with generation-based Fuzzing. The function CalChsum() is designed to compute

checksum if needed (flag=1).

Testcases, denotes test cases generated in the above two stages. Testcases = {T1, T2}, T1

denotes test cases generated in the first stage, and T2 in the second stage.

Function fun1 denotes mapping ((fi, ci),Mj) to 0 or 1 according to ci, 1≤i≤ n, 1≤j≤ r.

We can get generation matrix G, i.e. the strategy of generating test cases in the first stage.

Function fun2 denotes mapping (si, fj) to 0 or 1, 1≤i≤q, 1≤j≤n. We can get mutation

matrix M, i.e. the strategy of mutating test cases in the second stage.

The algorithm of generating test cases is described in Table 1. First, we need to initialize

matrixs G and M, each element of which is assigned 0 or 1. For each gij in G, we construct test

cases taking advantage of generation-based Fuzzing when gij=1. After the first stage, we can

get Sα from the first stage. In the second stage, for each mij in M, we construct test cases taking

advantage of mutation-based single-Fuzzing and multiple-Fuzzing, when mij=1.

Table 1. The algorithm of TFTCG

Algorithm 1

Input: F, MDB, SDB

Output: Testcases

1 Begin

2 //Initialization

3 calculate matrix G and M;

4 Testcases = Φ;

5 for each gij in G do

6 Testcases = Testcases U fuzz_generator(fi, Mj, gij, flag);

7 //We can get Sαfrom the first stage.

8 end

9 for each mij in M do

10 for each sj in SDB do

11 if mij then

12 Testcases = Testcases U CalChsum(single_mutator(fi,sj), flag);

13 end

14 Testcases = Testcases U multi_mutator();

15 end

16 end

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1997

Copyright ⓒ 2013 KSII

In Table 1, the functions fuzz_generator() and multi_mutator(), which denote generating

and mutating test cases, will be described in Table 2 and Table 3.

Algorithm 2: Suppose there are n vulnerable points existing in tested protocol. Let m

denotes the dimension of mutation-based multi-Fuzzing, and M = |MDB| denotes the number

of values in the database MDB. In the first stage, the function replace(T, fi, bj) denotes

replacing with data bj at the place ai of the packet T, bj from the database of malformed data

MDB, 1≤i≤n, 1≤j≤M. In other words, the function replace() means constructing test

cases with malformed data in the database MDB. For example, in Fig. 4 (1), we construct a

test case by replacing field 1, 3 and 5 with “normal” data and replacing fields 2 and 4 with

“abnormal” data. The function CalChsum() is designed to compute checksum if needed

(flag=1). For example, to test the protocol ARP, we should compute the checksum when

constructing an ARP packet. If we construct a SNMP packet and send it by a socket API, there

is no need to compute checksums.
Table 2. The algorithm of fuzz_generator

Algorithm 2

Input: F, MDB, gij

Output: T1(test case set in the first stage)

1 Begin

2 T1 =Φ;

3 T = Tdefault;// Tdefault denotes the default sample.

4 for(i = 1; i≤n; i++) do

5 if gij=1 then

6 for each Mk in M1, M2, …, Mr do

7 for each bj in Mk do

8 T1 = T1 U replace(T, fi, bj);

9 end

10 for each test case t in T1 do

11 CalChsum(t, flag)

12 //If flag = 1, calculate the checksum of t, 0 not.

13 end

14 end

15 end

16 end

17 return T1;

18 end

Algorithm 3: In the second stage, we first select samples from the sample database SDB.

The function select_sample(count, SDB) means selecting count samples from SDB. Then we

construct new test cases by mutating the samples. The function mutate(TSamples, c, d, N) denotes

mutating TSamples N times at the fields c and d of the sample TSamples, 1≤c, d≤n, TSamples denotes

sample data. For example, in Fig. 4(2), we construct a test case by mutating fields 3 and 4 of a

sample and keeping other fields of the sample unchanged. Afterwards, we compute the

checksums of test cases as the first stage do. By the way, m=2 in algorithm 3. When a higher

value of m will bring about the input combination explosion that a mass of test cases is created

in the generation process. We don’t discuss the issue on the optimization of the dimension m.

Table 3. The algorithm of multi_mutator

Algorithm 3

Input: F, SDB

Output: T2_multi

1 Begin

1998 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

2 T2_multi =Φ;

3 for (count = 0; count < |SDB|, count ++) do

4 temp = 1;

5 Tsamples = select_sample(count, SDB);

6 end

6 for (c = 1; c≤n; c++) do

7 while (temp≤N) do

8 T2_multi = T2_multi U CalChsum(mutate(Tsamples, c, d), flag)

9 end

10 end

11 end

4. Designs AND Implementation

According to the methodology in section 3, we design a vulnerability discovering framework

in view of router protocols, and develop a tool called RPFuzzer based on the architecture and

TFTCG with the Python language. The architecture of RPFuzzer consists of seven parts: script

parser module, test cases generator module, tester module, monitor module, debugger module,

verifier and output module and data import module. The architecture is illustrated in Fig. 6.

We will introduce and analyze the first six modules.

I. Script parser

module

II. Test cases generator module

Generation-based

Fuzzing

+

Manual analysis and test

Mutation-based

multi-Fuzzing

+

Historical data

III. Tester module

IV. Monitor

module

Exceptional

test cases

Verifier

VI. Data

import

module

Router

Output

External

test cases

V. Debugger module

GDB Client

IDA Pro

Dynamips modification

Cisco IOS

VII. Verifier and output

module

Router

Script files

Fig. 6. The architecture of RPFuzzer

4.1 Script Parser Module

Script files that RPFuzzer parses are comprised of two types of files, protocol script files and

configuration files. Protocol script files are used to describe protocol specifications, including

protocol types, ports, fields, vulnerable points etc. Manual analysis on the tested protocol is

indispensable to obtain above information. Configuration files contain the commands that

create and configure a virtual network adapter, the path of Cisco IOS images, GDB debugging

Port, the storage location of log files, the path and configuration information of Dynamips.

Script Parser Module can parse above scripts files, and obtain protocols format and related

configuration information. The configuration information covers router protocols

specification and debugging requirements. The former is used to configure the target protocol

before a test can be performed. The latter is ready for debugging router. When exceptions

occur, RPFuzzer will start the debugger with the debugging configuration information, and

preserve current register values at the breakpoint.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 1999

Copyright ⓒ 2013 KSII

4.2 Test Cases Generator Module

Test Cases Generator Module just as its name implies is to generate test cases, which can be

divided into two stages shown in Fig. 3. Based on the mathmetical model TFTCG, we can

generate test cases with malformed data at the points, which may exist bugs.

Different protocol has different vulnerable points. Taking the TFTP protocol as an

example, vulnerable points may include long filename and directory traversal [26], which

don’t exist in the SNMP protocol. Therefore, it is necessary and important to set the fields to

be generated or mutated, which is determined by manual analysis. To generate test cases, we

design a database MDB of malformed data, with which we can generate or mutate the weak

fields. The database consists of boundary value, overlong character strings, separators, format

strings and so on. The above sensitive data is illustrated in Table 4. In addition, when

analyzing certain protocol, another sensitive data about tested protocols can also be added into

the database MDB for testing the same protocol. According to the database MDB of

malformed data and the vulnerable points from manual analysis, we can generate test cases

automatically based on TFTCG.
Table 4. The Database of Malformed Data

Type Malformed data

integer 0x00, 0x0000, …; 0xFF, 0xFFFF, 0xFFFFFFFF, … ;

1, 2, 3, … ; 0x7F, 0x7FFF, 0x7FFFFFFF, … ;

0x80, 0x81; 0x8001, 0x80000001, …;

0xFF-1, 0xFFFF-1, 0xFFFFFFFF-1, 0xFFFFFFFF-2, 0xFFFFFFFF-3, …;

0xFFFFFFFF/2, 0xFFFFFFFF/2-1, 0xFFFFFFFF/2-2 ,…

character string Overlong strings: AAAAAA… ; BBBBBB… ;

nonalphanumeic

characters

field delimiters including tabs and spaces;

others: !, @, #, $, %,ˆ , &, *, (,), -, , =, +, {, }, \, ;, :, |, ”, ’, <, >, /, ?, and so on;

format string %d, %x, %s, %n and derived strings, such as %n%s%n%s, …, %s%s%s%s … , etc.

character

conversion

0x0, 0xFE, 0xFF, 0xef, 0xbb, 0xbf, 0xfe, 0xff, 0x10FFFF, overlong “%2f” and

“%5c”

directory

traversal
∼/, /··, ··/··/, \·, \··, ··\··\, and derived strings

4.3 Tester Module

The target routers that RPFuzzer tests are divided into two types, virtual routers and real router

devices. The flow chart of the tester module is shown in Fig. 7. Firstly, select the target, virtual

or physical device. Then configure the target according to protocol script files and

configuration files. If the target is a virtual router simulated by Dynamips, launch Cisco IOS

and configure the tested protocol. When an exception occurs after sending test cases to the

target router, invoke the debugger to record the values of registers and save the malformed test

cases. Then recover to normal for continuing testing till the end. If the target is a physical

router or a router simulated by other emulators, record the malformed test cases while an

exception occurs after booting up and configuration.

2000 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

An exception

occur？

Configuration

Select the target

Send test cases

No

Yes
Continue?

End

Call the debugger
Bug verifying and

output

Yes

No

Cisco IOS?

Fig. 7. Testing procedure

4.4 Monitor Module

Generally, there are three methods to monitor routers: monitoring CPU utilization, sending

monitoring data and checking system log.

(1) CPU Utilization.

By Monitoring CPU utilization, we can effectively detect DoS attack caused by the CPU

utilization abnormalities of the process that handles tested protocol data. But this method has

many limitations. For example, it is not applicable to cases that routers crash or reboot.

(2) Sending Monitoring Data.

We can also detect the abnormalities of routers by sending monitoring data. For instance,

we can either send normal SNMP messages to routers at regular interval or execute PING

command, i.e. send ICMP packets to monitor routers. This approach can detect router crash or

reboot and has high automation and credibility. However, the exception caused by abnormal

CPU utilization, we call it “mild-DoS attack”, could not be detected by this method.

(3) System Log.

System log can record the activities in router system, including initialization, reboot,

configuration and some error information. By checking system log, we can detect router crash,

reboot, zombie process etc [23]. But this method cannot detect “mild-DoS attack”and traffic

anomaly, furthermore, the method doesn’t work in real time.

In order to monitor routers better, the combination of three methods is adopted in RPFuzzer,

which can detect router crash, reboot, “mild-DoS attack”and so on.

4.5 Debugger Module

The debugger is developed on the basis of modified Dynamips [5], which is a tool that

facilitates debugging and reverse engineering process of Cisco IOS by GDB [27] or IDA Pro

[28]. GDB is only used in RPFuzzer’s debugger, while IDA Pro in dashed frame is left for

expansion later. The debugging procedure is illustrated in Fig. 8. When an exception occurs

during testing, the debugger firstly record the number of malformed test case and execute “x/i

$pc”and “info register”to log “breakpoint”, namely the values of all registers, which may be

used in vulnerability exploits. Then reboot and configure the router, continue testing

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 2001

Copyright ⓒ 2013 KSII

beginning with next test case till the end.

Log breakpoint

Reboot

Configure the router

End

Test

Test is

over?

Yes

An exception

occur?

Yes

No

No

Continue

testing?

Yes

No

Fig. 8. The procedure of debugging routers

4.6 Verifier and Output Module

There are two kinds of verifiers, virtual and real.

(1) Virtual

Virtual verifier mainly analyzes breakpoints and anomaly including router crash, reboot,

“mild-DoS attack”and zombie process on the virtual router emulated by Dynamips. We

determine whether the exception exists or not by resending the recorded test cases to virtual

router and checking up the registers. If the registers are abnormal, system log describes

abnormal records or CPU utilization is abnormal, there are flaws existing in routers.

 (2) Real

Real verifier is aimed at verifying bugs in physical router. It sends the malformed test cases

that bring about exceptions to corresponding physical routers. Due to the financial constraints

and other factors, it is infeasible for us to test all physical devices. During the experiments, we

just verify the flaws on several physical routers. Nevertheless, the exceptions and related

records can be submitted to router vendors, who will further verify the exceptions. Real

verifier could make up the drawback of virtual verifier that the emulation of routers is not

100% exact [11].

After confirming the vulnerabilities, we explicitly output vulnerability information in

detail.

5. Experiments on SNMP

To validate the effectiveness of RPFuzzer, we do experiments on SNMP. The following will

describe the procedure of testing SNMP in particular.

5.1 SNMP Protocol

Simple Network Management Protocol (SNMP) is an Internet-standard protocol for managing

devices on IP networks. It is used mostly in network management systems to monitor

network-attached devices for conditions that warrant administrative attention [30]. There are

four versions of SNMP, and different versions of SNMP have somewhat different messages.

There are several core PDUs of SNMP: GetRequest, GetNextRequest, SetRequest,

GetBulkRequest, Response and Trap. Five messages of SNMP are shown in Fig. 9, and

2002 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

Message formats are illustrated in Fig. 10 [29]. The messages formats of SNMPv2c, SNMPv3

[30][31] and other versions are not introduced particularly.

SNMP

NMS

Client

SNMP

Agent

Server

UDP connection

GetRequest

GetNextRequest

SetRequest

Response

Trap

Fig. 9. Five messages of SNMPv1

IP header UDP header SNMP header Get/Set header Variable-Bindings

IP

UDP

SNMP 20 bytes 8 bytes

Version Community PDU Type Request ID Error status Error index Variable-Bindings

PDU

Type
Enterprise

Generic

trap

Specific

Code

Time

stamp
Variable-Bindings

Agent

Addr

Trap header
Fig. 10. The message formats of SNMPv1

5.2 SNMP Vulnerable Point Analysis

The vulnerable points will be analyzed manually and empirically in this section. Fuzzing has

particular limitations in types of vulnerabilities it will find, such as access control flaws, poor

design logic, backdoors, memory corruption and multistage vulnerabilities [22]. For this

reason, we just consider the vulnerabilities that Fuzzing can find. In accordance with the

analysis on historical vulnerabilities and the SNMP protocol, there are five types of vulnerable

points on SNMP.

(1) ASN.1 BER parse

The SNMP protocol specifies ASN.1 with BER as its required encoding scheme. Each

data element is encoded as a type identifier, a length description, the actual data elements and

where necessary, an end-of-content marker.

About BER rules, possible vulnerable points are invalid encodings, including invalid types,

abnormal lengths and malformed values [32]. An invalid type/length/value encoding means

replacing right encodings with malformed encodings. For example, the encoding of Integer is

0x02, we can replace it with 0x04(OCET String) or 0x05(NULL).

2) Integer overflow

Integer overflow is caused by malformed Integer values including boundary value, large

Integer number and other values than Integer, besides, the transformation from signed Integer

value to unsigned may leads to anomaly. E.g. large Integer number 2
256

+1 or (−2
256

)-1 is likely

to cause Integer overflow. Although Integer overflow never happened on SNMP before, it is

indispensable for Fuzzing test.

(3) Buffer overflow

Buffer overflow is caused by incorrect input strings, which include long character strings

and format character strings. For SNMP, vulnerable points about buffer overflow could be the

field Variable-Bindings according to historical statistics. So we can test this field with

zero-length Object Identifier (OID), overlong single or multiple format character strings,

overlong OIDs with many branches.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 2003

Copyright ⓒ 2013 KSII

(4) Empty packets

Empty packets include empty UDP packets, empty IP packets, and empty SNMP packets.

The data of above packets is tested with 0x00. There are a lot of vulnerabilities caused by

empty packets. Such as CVE-2001-0566, its root cause is to send an empty packet to port

161(SNMP).

(5) A large number of packets

Sending a large number of packets to routers could allow attackers to cause a denial of

service or gain privileges, such as CVE-2002-0012 and CVE-2002-0013. This is a significant

cause for denial of service attack. Hence, we should test routers with a large number of all

kinds of SNMP packets.

5.3 Test Cases Generation

According to the analysis in section 5.2, we can determine the fields and malformed data to be

tested described as follows.

BER test: Each data element is encoded with TLV encodings. Hence, we could test all the

fields in SNMP packets. The test covers three parts: type, length and value. Type and length

can be generated with the data in Table 5, while value will be introduced particularly.

Table 5. The data for BER test

Name Malformed data (hex) (R denotes a random data)

type 0x02, 0x04, 0x06, 0x05, 0x30, 0x40, 0x41, 0x42, 0x43, 0x44, 0xRR

length 0x0, 0xFF, 0xFFFF, 0xRRRR

Integer overflow: This part is aimed at the fields whose type is Integer. The fields cover

SNMP header, Get/Set/GetNext/GetBulk header, Trap header and some fields in SNMPv3,

shown in Table 6. These fields can be generated with the data from MDB.

Table 6. The fields for Integer overflow test

Name Fields

SNMP header Version, PDU Type

get/set/getnext request and

getBulk header

Request ID, Error-status, Error-index

Trap header Generic-trap, Specific Code, Time stamp

Other fields (SNMPv3) globalData, msgFlags, msgID, msgMaxSize

Community name test: The vulnerabilities about community name are discovered more

than once in the past, such as CVE-2008-1320. We can generate the community name field

with the character string data in the database MDB of malformed data. Variable-Bindings field:

There are lots of vulnerabilities about this field, the reasons for which are overlong OID,

zero-length OID, format string OID and so on. We specially design some malformed data in

this field, shown in Table 7.

A large number of Request/Response packets: A large number of Request or Response

packets could cause a massive amount of CPU utilization, which can lead to crash or reboot of

routers. We can send a great number of Get/Set/GetNext/GetBulk Request, Response or Trap

packets malformed or normal to routers. It is important to note the malformed data in Table 5

and Table 7 should be added into the database MDB of malformed data , with which we will

test the SNMP protocol used in routers and other applications without analyzing it next time.

2004 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

Table 7. The Malformed data about Variable Bindings

Name Malformed data

Overlong single OID

(1.3.6.1.2.7.5.1.1.181.23.34.14.23)
n
,

(1.1.1.1.1.1.1.1.1.1.1.1.1)
n
, n denotes number of OIDs

Overlong multiple OID Two or more OID, such as

[(1.3.6.1.2.7.5.1.1.181.23.34.14.23)
n
+(1.3.6.1.2.7.5.1.1.181

.23.34.14.23)
m
]

k
, n, m and k denote number of OIDs

Trap header Generic-trap, Specific Code, Time stamp

Other fields (SNMPv3) globalData, msgFlags, msgID, msgMaxSize

5.4 Sample Data about SNMP

In the second stage for generating test cases, historical vulnerabilities data about SNMP is

required as sample data. We gather 20 vulnerabilities about SNMP in network devices of

Cisco, removing the vulnerabilities that are not suited to Fuzzing test. We select one sample

packet from vulnerabilities of the same kind. For example, there are 5 packets that can cause

the same bug, and we select one packet as a sample. The identifiers of selected vulnerabilities

are CVE-2001-1097, CVE-2002-0012, CVE-2002-0013, CVE-2003-1002 and CVE-2004-07

14. More than one sample is employed in the second stage, which can keep test efficiency

stable and enhance code coverage. In addition, we gain 10 abnormal samples from the first

stage, which can lead to denial of service attacks including exceptions caused by empty packet,

malformed OIDs. Both of the samples will be used as samples in mutation-based Fuzzing. We

give a malformed test case whose OID is “%s%s%s%s” from the first stage shown in Fig. 11.

Fig. 11. A malformed test case

5.5 Experimental Setup

Different tested targets have different setups. We give two types of setups illustrated in Table

8. The former are virtual routers emulated by Dynamips, the latter are physical routers or

virtual routers emulated by other simulators.

Table 8. Environment Setups

Target Cisco router Huawei router

IOS/VRP 12.x VRP x.x

Platform C26xx Nexx

System Version CentOS-6.0 CentOS-6.0

Tested Protocol SNMP SNMP

Adapter tap device tap device

GDB Port 4321 4321

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 2005

Copyright ⓒ 2013 KSII

According to the setups above, we can build the following environments to test routers, illustrated in

Fig. 12 and Fig. 13. The former is for Cisco routers, and the latter is for Huawei or other routers. The

difference between two environments is whether call the debugger when an exception occurs, the reason

for which is that dynamips can only emulate Cisco routers.

Script parser Test cases generator

Tester Monitor

Debugger

Dynamips modification

Cisco IOS

Verifier

Script files

Real

routers

Script parser

Test cases generator

Tester

Monitor

Verifier

Script files

Fig. 12. Test environment of Cisco routers Fig. 13. Test environment of Huawei routers

6. Evaluation

In this section, we will provide test results of experiments, and evaluate the performance of

RPFuzzer by comparing with other tools.

6.1 Test Results

Through testing two kinds of routers, we found 8 vulnerabilities, including 5 unreleased

vulnerabilities. Testing results are shown in Table 9.

Table 9. Testing results

Name Description CVE

Cisco

router

12.x

Empty UDP packet (SNMPv1) CVE-2001-0566

CVE-2001-1097

A large number of GetRequest, SetRequest,

GetNextRequest, GetBulk Request (SNMPv1)

CVE-2002-0012

CVE-2002-0013

Empty UDP packet (SNMPv2c/v3) unrealsed

A large number of GetRequest, SetRequest,

GetNextRequest, GetBulk Request (SNMPv2c/v3)

unrealsed

Huawei

router

Nexx

Empty UDP packet (SNMPv1) unreleased

A large number of GetRequest, SetRequest,

GetNextRequest, GetBulk Request and Trap(SNMPv1)

unreleased

Empty UDP packet (SNMPv2c/v3) unreleased

A large number of GetRequest, SetRequest,

GetNextRequest, GetBulk Request (SNMPv2c/v3)

unreleased

The vulnerabilities in Table 9 can be divided into two categories: empty UDP packet and a

large number of SNMP request packets.

(1) A large number of Request Packets

We create a denial of service by sending a large number of Get/Set/GetNext/GetBulk

2006 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

Request, Trap/Response packets to port 161(SNMP) when SNMP is enabled, with the field

variable-bindings tested with overlong or nested OIDs. We just provide abnormal CPU

utilization of routers shown in Fig. 14, for registers of tested routers is normal. CPU utilization

of a Cisco router is shown in the above and that of a Huawei router in the below.

Fig. 14. CPU utilization of Cisco router(above) and Huawei router(below).

(2) Empty UDP packet

A flood of empty UDP packets can result in a “Mild-DoS” to tested routers whose CPU

utilization is less than 100%, such as 65% in Fig. 15 (left). For the purpose of illustrating this

type of vulnerabilities, we try to telnet the tested router. Timeout expired when input a

password is needed shown in Fig. 15 (right).

Furthermore, we test Response Time (RT) and Packet Loss Rate (PLR) of the tested router

under a “Mild-DoS”shown in Fig. 16. Response Time is uneven and some parts are

unconnected for the reason that request timed out or ICMP packet is lost. The blue border

marks that request timed out, while PLR is about 9% marked by a red border.

Fig. 15. Mild-DoS: CPU utilization (left) and test with telnet (right)

6.2 Comparison with Related Tools

In this section, we compare RPFuzzer with Peach, SPIKE and Sulley from generation

strategy, monitor, debugger, checksum validation, dimensions, the number of test cases, run

time, vulnerabilities on the SNMP protocol and so on. The comparison results are shown in

Table 10.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 2007

Copyright ⓒ 2013 KSII

Fig. 16. Packet Loss Rate and Response Time

Table 10. Comparison results

Name Strategy Monitor Debugger Dimension Number Run time Speed Bugs

SPIKE generation No No Single 62913 95m 662 0

Peach m&g Yes No Single 76593 224m 341 0

Sulley generation Yes No Single 52396 868m 60 0

RPFuzzer m&g Yes Yes Multiple 2153000 1440m 1495 8

 Stragedy. RPFuzzer and Peach which adopt the combination of generation and mutation

(m&g) is superior to SPIKE and Sulley in terms of strategy to generating test cases.

 Monitor. Although Peach and Sulley have monitors, they are not or partly not suitable for

monitoring routers. For example, Sulley have two monitors, network monitor and process

monitor. The former monitor network com13. TIIS-RP-2013-May-0427.R1munication

by sniffing NIC devices, which is as inefficient as a sniffer. The latter that monitor related

target processes is aimed at applications. Only RPFuzzer’ monitor is developed specially

for routers.

 Debugger. RPFuzzer has a debugger that can record register values when an exception

occurs. Other tools all lack a debugger.

 Run Time, number and vulnerabilities. Because of lack monitor and debugger, the run

time of SPIKE is less than that of other tools. RPFuzzer is the most time-consuming for

the number of test cases is the most. In addition, the monitor and the debugger also

consume a lot of time. To explain the efficiency of RPFuzzer, we compute the overall

speed with the formula: speed=number/runtime. The Speed of RPFuzzer is the fastest.

Considering a combination of number of test cases, run time and vulnerabilities,

RPFuzzer performs more effectively.

7. Conclusion and Future Work

The paper designs the first semi-automatic vulnerability discovering framework of router

protocols and proposes a mathematical model TFTCG. Based on above architecture and model,

we develop a tool RPFuzzer. RPFuzzer improves test case generation strategy, and solves the

problem that the monitors and debuggers of previous tools are not applicable to routers.

RPFuzzer can test effectively and automatically test routers, and can be easily extended to test

other network devices such as switches. Furthermore, RPFuzzer offers a test case library for

testing network applications and other software that involve router protocols.

2008 Wang et al.: RPFuzzer: A Research on Vulnerability Discovering for Router Protocols Based on Fuzzing

In the future, we plan to extend our approach in different directions. First, we intend to

extend the application scope of the debugger. Second, we want to explore the solutions to the

problem about input combination explosion.

References

[1] F. Linder, “Routing and tunneling protocol attacks,” in Proc. of BlackHat briefings, Amsterdam,

Holland, November, 2001. Article (CrossRef Link).

[2] M. Lynn, “The holy grail: Cisco IOS shellcode and exploitation techniques,” in Proc. of BlackHat,

Las Vegas, USA. July, 2005. Article (CrossRef Link).

[3] A. Pilosov and T. Kapela, “Stealing the internet: An internet-scale man in the middle attack,” in

Defcon 16, Las Vegas, USA, August, 2008. Article (CrossRef Link).

[4] Gyan Chawdhary and Varun Uppal, “Cisco IOS shellcode,” in Proc. of BlackHat, Las Vecas, USA,

August, 2008. Article (CrossRef Link).

[5] Groundworks technologies, dynamips gdb server mod project,

http://www.groundworkstech.com/projects/dynamipsgdb-mod, June-December, 2011.

[6] National Vulnerability Database, http://nvd.nist.gov/, June-December, 2011.

[7] Felix Lindner, “Cisco vulnerabilities-yesterday, today and tomorrow,” in Proc. of BlackHat,

Virginia, USA, September 29-October 2, 2007. Article (CrossRef Link).

[8] Felix Linder, “Cisco IOS attack and defense the state of art,” in Proc. of 25th Chaos

Communication Congress (25C3), Berlin, Germany, December, 2009. Article (CrossRef Link).

[9] Felix Linder, “Cisco IOS router exploitation,” in BlackHat, Las Vecas, USA, July, 2009.Article

(CrossRef Link).

[10] A. Cui, J. Kataria and S.J. Stolfo, “Killing the myth of Cisco IOS diversity,” in Proc. of USENIX

Worshop on Offensive Technologies, San Francisco, CA, USA, August, 2011. Article (CrossRef

Link).

[11] S. Muniz and A. Ortega, “Fuzzing and debugging Cisco IOS,” in Proc. of BlackHat, Barcelona,

Spain, March, 2011. Article (CrossRef Link).

[12] B.P. Miller, L. Fredriksen and B. So, “An empirical study of the reliability of unix utilities,”

Communications of the ACM, 33(12):32–44, 1990. Article (CrossRef Link).

[13] P. Oehlert, “Violating assumptions with fuzzing,” Security & Privacy, IEEE, 3(2):58–62, 2005.

Article (CrossRef Link).

[14] Ai-Fen Sui, Wen Tang, Jian Jun Hu and Ming Zhu Li, “An effective fuzz input generation method

for protocol testing,” in Proc. of IEEE 13
th

 International Conference on Communication

Technology (ICCT), pages 728–731, IEEE, September, 2011. Article (CrossRef Link).

[15] X. Zhu, Z. Wu and J.W. Atwood. “A new fuzzing method using multi data samples combination,”

Journal of Computers, 6(5):881–888, 2011. Article (CrossRef Link).

[16] Z. Wu, J.W. Atwood and X. Zhu, “A new fuzzing technique for software vulnerability mining,” in

Proc. of the IEEE CONSEG, Chennai, India, December, 2009. Article (CrossRef Link).

[17] SPIKE, http://www.immunityinc.com/resourcesfreesoftware.shtml, June, 2010-November, 2011.

[18] PEACH, http://peachfuzzer.com/, June, 2010-November, 2011.

[19] Sulley, http://code.google.com/p/sulley/, June, 2010-November, 2011.

[20] AutoDafe, http://autodafe.sourceforge.net/, June, 2010-November, 2011.

[21] GPF, http://www.vdalabs.com/tools/efs gpf.html, June, 2010-November, 2011.

[22] M. Sutton, A. Greene and P. Amini, Fuzzing: brute force vulnerabilty discovery, 1
st
 Edition,

Addison-Wesley Professional, New Jersey, 2007.

[23] B. ZHANG, C. ZHANG, and Y. XU, “Network protocol vulnerability discovery based on fuzzy

testing,” Journal of Tsinghua University (Science and Technology), pages S2, 51–56, 2009. Article

(CrossRef Link).

[24] G. Banks, M.Cova, V.Felmetsger, K.Almeroth, R.Kemmerer and G.Vigna, “Snooze: toward a

stateful network protocol fuzzer,” Information Security, pages 343–358, 2006. Article (CrossRef

Link).

http://www.blackhat.com/presentations/bh-europe-01/fx/bh-europe-01-fx.pdf
http://securityvulns.ru/files/lynn-cisco.pdf
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-pilosov-kapela.pdf
http://www.blackhat.com/presentations/bh-usa-08/Chawdhary_Uppal/BH_US_08_Chawdhary_Uppal_Cisco_IOS_Shellcodes.pdf
http://www.blackhat.com/presentations/bh-federal-03/bh-fed-03-fx.pdf
http://www.phenoelit.org/stuff/FX_Phenoelit_25c3_Cisco_IOS.pdf
http://www.blackhat.com/presentations/bh-usa-09/LINDNER/BHUSA09-Lindner-RouterExploit-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/LINDNER/BHUSA09-Lindner-RouterExploit-PAPER.pdf
http://static.usenix.org/events/woot11/tech/final_files/Cui.pdf
http://static.usenix.org/events/woot11/tech/final_files/Cui.pdf
https://media.blackhat.com/bh-eu-11/Sebastian_Muniz/BlackHat_EU_2011_MunizOrtega_Cisco_iOS-WP.pdf
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1109/MSP.2005.55
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6157972&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6157972
http://dx.doi.org/10.4304/jcp.6.5.881-888
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.167.2878&rep=rep1&type=pdf
file:///C:/Users/Kim%20Jinseok/AppData/Local/Temp/_AZTMP1_/%5b24%5d%09http:/en.cnki.com.cn/Article_en/CJFDTOTAL-QHXB2009S2007.htm
file:///C:/Users/Kim%20Jinseok/AppData/Local/Temp/_AZTMP1_/%5b24%5d%09http:/en.cnki.com.cn/Article_en/CJFDTOTAL-QHXB2009S2007.htm
http://www.springerlink.com/index/E7U87826375LU431.pdf
http://www.springerlink.com/index/E7U87826375LU431.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013 2009

Copyright ⓒ 2013 KSII

[25] Common Vulnerabilities and Exposures, http://cve.mitre.org/, June-December, 2011.

[26] Qixu Liu and Yuqing Zhang, “TFTP vulnerability finding technique based on fuzzing,” Computer

Communications, 31(14):3420–3426, 2008. Article (CrossRef Link).

[27] GDB, The GNU Project Debugger, http://sources.redhat.com/gdb/, June-December, 2011.

[28] IDA, http://www.hexrays.com/products/ida/index.shtml, June-December, 2011.

[29] J.Case, M.Fedor, M.Schoffstall and J.Davin, RFC 1157: A Simple Network Management Protocol

(SNMP), 1990.

[30] SNMPv2 Working Group et al, RFC 1902: Structure of management information for version 2 of

the simple network management protocol (SNMPv2), 1996.

[31] R.Mundy, D.Partain and B.Stewart, “Introduction to SNMPv3,” Technical report, RFC 2570,

April, 1999.

[32] O.Tal, S.Knight and T.Dean, “Syntax-based vulnerability testing of frame-based network

protocols,” in Proc. of 2nd Annual Conference on Privacy, Security and Trust, pages 155–160.

Citeseer, 2004. Article (CrossRef Link).

Zhqiang Wang is currently a Ph.D. candidate in Department of Communication

Engineering, Xidian University, China. He has joined in State Key Laboratory of

Integrated Services Networks, in Xidian University. His research interests include

system security and network security.

Yuqing Zhang is a professor and supervisor of Ph.D. candidates of Graduate

University of Chinese Academy of Sciences. He received his B.S. and M.S. degree in

computer science from Xidian University, China, in 1987 and 1990 respectively. He

received his Ph.D. degree in Cryptography from Xidian University in 2000. He is a

member of IEEE Communications Society and IEICE Transactions on

Communications. He has published lots of papers in International Journals and

conferences including IEEE Transactions on Dependable and Secure Computing,

IEEE Transactions on Wireless Communications, IEEE Communications Letters,

Globecom, RAID and so on. His research interests include cryptography, information

security and network protocol security.

Qixu Liu is a Post Doctor in University of Chinese Academy of Sciences, Beijing,

China. He received his Ph.D. degree in Information Security from Graduate

University of Chinese Academy of Sciences, in 2011. He received his B.Sc. in

Information Security from University of Science and Technology of China, in 2006.

He has worked in network and system security and his current research interests

include vulnerability assessment and web security.

http://dx.doi.org/10.1016/j.comcom.2008.05.041
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.3630&rep=rep1&type=pdf

