DOI QR코드

DOI QR Code

친수성 막을 통한 수분 전달 특성 연구

Experimental Evaluation of Hydrophilic Membrane Humidifier with Isolation of Heat Transfer Effect

  • 투고 : 2013.02.07
  • 심사 : 2013.06.03
  • 발행 : 2013.09.01

초록

고분자 전해질 연료전지(이하 PEMFC) 시스템의 효율과 수명은 유입되는 공기의 습도에 직접적인 영향을 받는다. 그러므로 공기는 정상 운전조건에서 적절한 습도를 유지시켜 주어야 한다. 하지만 가습 장치의 특성들에 대해서는 연구가 부족한 상태이다. 본 연구에서는 정상상태에서 다양한 입구조건에 따른 막 가습기의 수분전달 특성을 알아보기 위해 실험을 수행하였다. 실험에 이용할 평판형 막 가습기를 제작하였으며, 실험에 적합한 환경을 조성하였다. 우선 일정한 온도 조건하에서 막을 통과하는 수분 전달 능력을 실험하였고 이후 다양한 입구 조건에 따른 수분 전달 특성을 알아보았다. 본 실험에서 사용된 입구조건의 변수는 건공기와 습공기의 유량, 작동온도, 작동압력 및 유동배열이 있으며 각각의 입구 조건이 가습기의 성능에 미치는 영향을 논의하였다.

The efficiency and lifetime of a polymer electrolyte membrane fuel cell (PEMFC) system is critically affected by the humidity of the incoming gas, which should be maintained properly under normal operating conditions. Typically, the incoming gas of a fuel cell is humidified by an external humidifier, but few studies have reported on the device characteristics. In this study, a laboratory-scale planar membrane humidifier is designed to investigate the characteristics of water transport through a hydrophilic membrane. The planar membrane humidifier is immersed in a constant temperature bath to isolate the humidifier from the effect of temperature variations. The mass transfer capability of the hydrophilic membrane is first examined under isothermal conditions. Then, the mass transfer capability is investigated under various conditions. The results show that water transport in the hydrophilic membrane is significantly affected by the flow rate, operating temperature, operating pressure, and flow arrangement.

키워드

참고문헌

  1. Picot, D., Metkemeijer, R., Bezian, J. J. and Rouveyre, L., 1998, "Impact of the Water Symmetry Factor on Humidification and Cooling Strategies for PEM Fuel Cell Stacks," Journal of Power Sources, Vol. 75, pp. 251-260. https://doi.org/10.1016/S0378-7753(98)00123-2
  2. Staschewski, D. and Mao, Z. Q., 1999, "PEMFC Operation with Extraordinarily Low Gas Pressures and Internal Humidification - Conception and Experimantal Prototype Stack," International Journal of Hydrogen Energy, Vol. 24, pp. 543-548. https://doi.org/10.1016/S0360-3199(98)00102-5
  3. Buchi, F. N. and Srinivasan, S., 1997, "Operating Proton Exchange Membrane Fuel Cells without External Humidification of the Reactant Gases-Fundamental Aspects," Journal of Electrochemical Society, Vol. 144, No. 8, pp. 2767-2772. https://doi.org/10.1149/1.1837893
  4. Miachon, S. and Aldebert, P., 1995, "Internal Hydration H2/O2 100cm2 Polymer Electrolyte Membrane Fuel Cell," Journal of Power Sources, Vol. 56, pp. 31-36. https://doi.org/10.1016/0378-7753(95)80005-2
  5. Choi, K. H., Park, D. J., Rho, Y. W., Kho, Y. T. and Lee, T. H., 1998, "A Study of the Internal Humidification of an Integrated PEMFC Stack," Journal of Power Sources, Vol. 74, pp. 146-150. https://doi.org/10.1016/S0378-7753(98)00048-2
  6. Yang, T. H., Yoon, Y. G., Kim, C. S., Kwak, S. H. and Yoon, K. H., 2002, "A Novel Preparation Method of a Self-humidifying Polymer Electrolyte Membrane," Journal of Power Source, Vol. 106, pp. 328-332. https://doi.org/10.1016/S0378-7753(01)01025-4
  7. Staschewski, D., 1996, "Internal Humidifying of PEM Fuel Cells," International Journal of Hydrogen Energy, Vol. 21, No. 5, pp. 381-385. https://doi.org/10.1016/0360-3199(95)00087-9
  8. Chen, D. and Peng, H., 2005, "A Thermodynamic Model of Membrane Humidifiers for PEM Fuel Cell Humidification Control," Journal of Dynamic Systems, Measurement, Vol. 127, pp. 424-432.
  9. Chu, D., Jiang, R. and Walker, C., 1999, "Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stacks Part 1. Evaluation and Simulation of an Air-Breathing PEMFC Stack," Journal of Power Sources, Vol. 83, pp. 128-133. https://doi.org/10.1016/S0378-7753(99)00285-2
  10. Dubose, R. A., 2002, "Enthalpy Wheel Humidifiers," Proceeding of 2002 Fuel Cell Seminar.
  11. Ha, T. H., Kim, H. S. and Min, K. D., 2006, "Experimental and Modeling Study of Humidification Performance of Membrane Humidifier for PEM Fuel Cell," Journal of KSAE, pp. 1766-1771.
  12. Choi, K. H., Park, D. J., Rho, Y. W., Kho, Y. T. and Lee, T. H., 1998, "A Study of the Internal Humidification of An Integrated PEMFC Stack," Journal Power Sources, Vol. 74, pp. 146-150. https://doi.org/10.1016/S0378-7753(98)00048-2
  13. Barenbrug A.W.T., 1974, "Psychrometry and Psychrometric Charts," 3rd Edition, 3rd Edition, Cape Town, S.A.: Cape and Transvaal Printers Ltd..
  14. Motupally, S., Becker, A. J. and Weidner, J. W., 2000, "Diffusion of Water in Nafion 115 Membranes," J. Electrochem. Soc., Vol. 147, No. 9, pp. 3171-3177. https://doi.org/10.1149/1.1393879
  15. Tak, H. W., Kim, K. T., Im, S. Y., and Yu, S. S., 2012, "Steady State Vavpor Transfort Characteristic of Nafion Membrane over Various Operating Conditions," Trans. of the KHNES, Vol. 23, No. 1, pp. 19-25.
  16. Springer, T. F., Zatwodzinski, T. A. and Gonesfeld, S., 1991, "Polymer Electrolyte Fuel Cell Model," J. Electrochem. Soc., Vol. 138, No. 8, pp. 2234-2342.
  17. Shan, Y., Choe, S. Y., 2005, "A High Dynamic PEM Fuel Cell Model with Temperature Effects," Journal of Power Source, Vol. 145, pp. 30-39. https://doi.org/10.1016/j.jpowsour.2004.12.033
  18. Nguyen, T. V., White, R. E., 1993, "A Water and Heat Management Model for Proton - Exchange - Membrane Fuel Cells," J. Electrochem. Soc., Vol. 140, No. 8, pp. 2178-2186. https://doi.org/10.1149/1.2220792
  19. Chen, D., Li, W. and Peng, H., 2008, "An Experimental Study and Model Validation of a Membrane Humidifier for PEM Fuel Cell Humidification Control," Journal of Power Source, Vol. 180, pp. 461-467. https://doi.org/10.1016/j.jpowsour.2008.02.055