DOI QR코드

DOI QR Code

다수의 임의로 경사진 등방성 타원형 장섬유를 포함하는 복합재료에서의 응력 해석

Stress Analysis in Multiple Isotropic Elliptical Fibers of Arbitrary Orientation

  • 이정기 (홍익대학교 기계정보공학과) ;
  • 오상민 (홍익대학교 기계정보공학과 대학원)
  • 투고 : 2013.05.11
  • 심사 : 2013.08.19
  • 발행 : 2013.09.01

초록

체적 적분방정식법이라는 새로운 수치해석 방법을 이용하여, 다수의 임의로 경사진 등방성 타원형 장섬유를 포함하는 등방성 무한고체가 정적 인장하중을 받을 때 무한고체 내부에 발생하는 응력분포 해석을 수행하였다. 장섬유들과 기지 사이의 경계면은 완전결합이라고 가정하여, 평면 변형률 해석을 수행하였다. 즉, 등방성 기지에 다수의 임의로 경사진 등방성 타원형 장섬유의 중심이 1) 정사각형 배열 형태 또는 2) 정육각형 배열 형태로 포함되어 있는 경우에, 다양한 타원형 장섬유의 체적비와 다양한 경사각에 대하여, 중앙에 위치한 등방성 타원형 장섬유와 등방성 기지의 경계면에서의 인장응력 분포의 변화를 구체적으로 조사하였다. 또한, 체적 적분방정식법을 이용한 해를 해석하고, 유한요소법을 이용한 해와 비교해 봄으로서, 체적 적분방정식법을 이용하여 구한 해의 정확도를 검증하였다.

A volume integral equation method (VIEM) is introduced for the solution of elastostatic problems in an unbounded isotropic elastic solid containing multiple isotropic elliptical fibers of arbitrary orientation subject to uniform stress at infinity. The fibers are assumed to be long parallel elliptical cylinders composed of isotropic elastic material perfectly bonded to the isotropic matrix. The solid is assumed to be under plane strain on the plane normal to the cylinders. A detailed analysis of the stress field at the matrix-fiber interface for square and hexagonal packing of the fibers is carried out for different values of the number, orientation angles and concentration of the elliptical fibers. The accuracy and efficiency of the method are examined through comparison with results obtained from analytical and finite element methods.

키워드

참고문헌

  1. Lee, Y.-T., and Chen, J.-T., "Null-field Approach for the Antiplane Problem with Elliptical Holes and/or Inclusions," Composites: Part B, Vol. 44, 2013, pp. 283-294. https://doi.org/10.1016/j.compositesb.2012.05.025
  2. Christensen, R.M., and Lo, K.H., "Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models," Journal of the Mechanics and Physics of Solids, Vol. 27, 1979, pp. 315-330. https://doi.org/10.1016/0022-5096(79)90032-2
  3. Bose, S.K., and Mal, A.K., "Elastic Waves in a Fiber-Reinforced Composite," Journal of the Mechanics and Physics of Solids, Vol. 22, 1974, pp. 217-229. https://doi.org/10.1016/0022-5096(74)90026-X
  4. Maslov, B.P., "Stress-Strain State in the Matrix of Stochastically Reinforced Composites," Mechanics of Composite Materials, Vol. 25, No. 3, 1989, pp. 282-288. https://doi.org/10.1007/BF00614790
  5. Yang, R.B., and Mal, A.K., "The Effective Transverse Moduli of a Composite with Degraded Fiber-Matrix Interfaces," International Journal of Engineering Science, Vol. 33, No. 11, 1995, pp. 1623-1632. https://doi.org/10.1016/0020-7225(95)00017-R
  6. Lee, J.K., and Mal, A.K., "A Volume Integral Equation Technique for Multiple Inclusion and Crack Interaction Problems," Transactions of the ASME, Journal of Applied Mechanics, Vol. 64, 1997, pp. 23-31. https://doi.org/10.1115/1.2787282
  7. Lee, J.K., Choi, S.J., and Mal, A., "Stress Analysis of an Unbounded Elastic Solid with Orthotropic Inclusions and Voids Using a New Integral Equation Technique," International Journal of Solids and Structures, Vol. 38, No. 16, 2001, pp. 2789-2802. https://doi.org/10.1016/S0020-7683(00)00182-7
  8. Lee, J.K., Han, H.D., and Mal, A., "Effects of Anisotropic Fiber Packing on Stresses in Composites," Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 33-36, 2006, pp. 4544-4556. https://doi.org/10.1016/j.cma.2005.10.012
  9. Dong, C.Y., Lo, S.H., and Cheung, Y.K., "Numerical Solution of 3D Elastostatic Inclusion Problems Using the Volume Integral Equation Method," Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 1-2, 2003, pp. 95-106. https://doi.org/10.1016/S0045-7825(02)00534-0
  10. Lee, J.K., and Kim, H.-R., "Volume Integral Equation Method for Multiple Circular and Elliptical Inclusion Problems in Antiplane Elastostatics," Composites: Part B, Vol. 43, 2012, pp. 1224-1243. https://doi.org/10.1016/j.compositesb.2011.11.066
  11. Lee, J.K., "Elastic Analysis in Composite Including Multiple Elliptical Fibers," Journal of the Korean Society for Composite Materials, Vol. 24, No. 6, 2011, pp. 37-48. https://doi.org/10.7234/kscm.2011.24.6.037
  12. Lee, J.K., "Stress Analysis of Multiple Anisotropic Elliptical Inclusions in Composites," Composite Interfaces, Vol. 19, No. 2, 2012, pp. 93-119. https://doi.org/10.1080/15685543.2012.699381
  13. Brauer, D.S., Russel, C., Vogt, S., Weisser, J., and Schnabelrauch, M., "Degradable Phosphate Glass Fiber Reinforced Polymer Matrices: Mechanical Properties and Cell Response," Journal of Materials Science: Materials in Medicine, Vol. 19, Issue 1, 2008, pp. 121-127. https://doi.org/10.1007/s10856-007-3147-x
  14. Buryachenko, V.A., Micromechanics of Heterogeneous Materials, Springer, New York, 2007.
  15. Banerjee, P.K., The Boundary Element Methods in Engineering, McGraw-Hill, New York, 1993.
  16. Wang, X., Pan, E., and Sudak, L.J., "Uniform Stresses Inside an Elliptical Inhomogeneity with an Imperfect Interface in Plane Elasticity," Transactions of ASME, Journal of Applied Mechanics, Vol. 75, 2008, pp. 054501-1-054501-5. https://doi.org/10.1115/1.2913045
  17. PATRAN User's Manual, Version 2010.1.2, MSC/PATRAN, 2010.
  18. NASTRAN User's Manual, Version 2010.1.3a, MSC/NASTRAN, 2010.

피인용 문헌

  1. Experimental analysis of orthotropic strength properties of non-crimp fabric based composites for automotive leaf spring applications vol.271, pp.None, 2013, https://doi.org/10.1016/j.compstruct.2021.114154