DOI QR코드

DOI QR Code

슬래그 입자의 크기 및 체적비에 따른 슬래그 입자강화 복합재료의 기계적 특성 연구

Effect of Slag Particle Size and Volume Fraction on Mechanical Properties of Slag Reinforced Composite

  • 남지훈 (연세대학교 기계공학과 기계공학 전공 대학원) ;
  • 전흥재 (연세대학교 기계공학과) ;
  • 홍익표 (공주대학교 전자공학과)
  • 투고 : 2013.05.11
  • 심사 : 2013.08.14
  • 발행 : 2013.09.01

초록

본 연구에서는 제강 과정의 부산물로 발생하는 슬래그의 구조용 충전제로써의 사용 가능성을 검토하였다. 고분자 기지 슬래그 복합재료를 제작하여 슬래그 입자의 크기(8~12 ${\mu}m$ and 12~16 ${\mu}m$), 체적 비(0-30 vol.%)에 따른 슬래그 복합재료의 기계적 특성에 대한 실험적 연구를 수행하였다. 복합재료 물성에 영향을 주는 요인인 입자 분산 도와 계면상태를 고찰하기 위해 각각 시편에 대하여 조직사진을 촬영하였다. 인장 시험 결과 슬래그 복합재료의 재료강성은 슬래그 체적비가 증가할수록 증가하였고 인장 강도는 체적비가 증가할수록 감소하였다. 슬래그 복합재료의 재료강성은 슬래그 입자의 크기의 변화에 따른 뚜렷한 경향성을 띄지 않았고 인장강도는 입자의 크기가 작을수록 높은 값을 가졌다. 조직 사진 촬영 결과 슬래그 복합재료가 양호한 계면상태를 보였고, 낮은 체적 비에서는 좋은 분산 도를 나타냈지만 체적비가 높아지면 입자들의 뭉침 현상이 발생하는 것을 알 수 있었다.

This study demonstrated that a slag, an industrial solid waste, can be used as a structural reinforcement. The mechanical properties(tensile strength and Elastic modulus) of slag reinforced composite(SRC) was investigated as functions of slag particle size (8~12 ${\mu}m$ and 12~16 ${\mu}m$) and volume fraction (0-40 vol.%). In order to investigate the interface and a degree of particle dispersion which have an effect on mechanical properties, optical microscopic images were taken. The results of tensile tests showed that the tensile strength decreased with an increase in slag volume fraction and particle size. The elastic modulus increased with an increase in slag volume fraction and particle size except for 30 vol.% SRC. The tensile strength decreased with an increase in slag particle size. The microscopic picture showed SRC has fine degree of particle dispersion at low slag volume fraction. SRC has a good interface at every volume fraction. However particle cluster was incorporated with an increase in slag volume fraction.

키워드

참고문헌

  1. Choi, S.W., Kim, V., Chang, W.S., and Kim, E.T., "The Present Situation of Production and Utilization of Steel Slag in Korea and Other Contries," Journal of the Korea Concrete Institute, Vol. 19, No. 6, 2007, pp. 28-33.
  2. Francis, A.A., "Conversion of Blast Furnace Slag into New Glass-ceramic Material," Journal of the European Ceramic Society, Vol. 24, No. 9, 2004, pp. 2819-2824. https://doi.org/10.1016/j.jeurceramsoc.2003.08.019
  3. Fu, S.Y., Feng, X.Q., Lauke, B., and Mai, Y.W., "Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-polymer composites," Journal of Composite Part B, Vol. 39, No. 6, 2008, pp. 933-961. https://doi.org/10.1016/j.compositesb.2008.01.002
  4. Einstein, A., "Uever die von der molekularkinetischen fluessigkeiten suspendierten teilchen," Annalen Der Physic, Vol. 332, No. 8, 1905, pp. 549-560.
  5. Einstein, A., Investigation on Theory of Brownian Movement, Dover, New York, USA, 1956.
  6. Radford, K.C., "The Mechanical Property of an Epoxy Resin with a Second Phase Dispersion," Journal of Master Science, Vol. 6, No. 10, 1971, pp. 1286-1291. https://doi.org/10.1007/BF00552042
  7. Spanoudakis, J., and Young, R.J., "Crack Propagation in a Glass Particle-Filled Epoxy-Resin," Journal of Master Science, Vol. 19, No. 2, 1984, pp. 473-486. https://doi.org/10.1007/BF02403234
  8. Nakamura, Y., Yamaguchi, M., Okubo, M., and Matsumoto, T., "Effect of Particle Size on Mechanical Properties of Epoxy Resin Filled with Angular-Shaped Silica," Journal of Applied Polymer Science, Vol. 44, No. 1, 1992, pp. 151-158. https://doi.org/10.1002/app.1992.070440116
  9. Xie, X.L., Zhou, X.P., and Mai, Y.W., "Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review," Journal of Materials Science and Engineering, Vol. 49, No.4, 2005, pp. 89-112.
  10. Zhang, Q., Tian, M., Wu, Y., Ling, G., and Zhang, L., "Effect of Particle Size on the Properties of $Mg(OH)_2$-Filled Rubber Composites," Journal of Applied Polymer Science, Vol. 94, No. 6, 2004, pp. 2341-2346. https://doi.org/10.1002/app.21037
  11. Lazzeri, A., Thio, Y.S., and Cohen, R.E., "Volume Strain Measurements on $CaCO_{3}$/Polypropylene Particulate Composites: The Effect of Particle Size," Journal of Applied Polymer Science, Vol. 91, No. 2, 2004, pp. 925-935. https://doi.org/10.1002/app.13268
  12. Pukanszky, B., and Voros, G., "Mechanism of Interfacial Interactions in Particulate Filled Composites," Journal of Composite Interface, Vol. 1, No. 5, 1993, pp. 411-427.
  13. Giannelis, E.P., "Polymer Layered Silicate Nanocomposites," Journal of Advanced Materials, Vol. 8, No. 1, 1996, pp. 29-35. https://doi.org/10.1002/adma.19960080104
  14. Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., and Varlet, J., "Nanofillers in Polymeric Matrix : a Study on Silica Reinforced PA6," Journal of Polymer, Vol. 42, No. 21, 2001, pp. 8759-8768. https://doi.org/10.1016/S0032-3861(01)00446-3
  15. Sumita, M., Shizuma, T., Miyasaka, K., and Ishikawa, K., "Effect of Reducible Properties of Temperature, Rate of Strain, and Filler Content on the Tensile Yield Stress of Nylon 6 Composite Filled with Ultrafine Particles," Journal of Macromolecular Science, Part B: Physics, Vol. 22, No. 4, 1983, pp. 601-618. https://doi.org/10.1080/00222348308224779
  16. Leidner, J., and Woodhams, R.T., "Strength of Polymeric Composites Containing Spherical Fillers," Journal of Applied Polymer Science, Vol. 18. No. 6, 1974, pp. 1639-1654. https://doi.org/10.1002/app.1974.070180606