참고문헌
- R. Adams, Sobolev Spaces, Academic Press Inc., New York, 1975.
- D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), no. 4, 337-344. https://doi.org/10.1007/BF02576171
- H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2005.
- E. Erturk, T. Corke, and C. Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Methods Fluids 48 (2005), 747-774. https://doi.org/10.1002/fld.953
- V. J. Ervin, W. Layton, and J. M. Maubach, Adaptive defect-correction methods for viscous incompressible flow problems, SIAM J. Numer. Anal. 37 (2000), no. 4, 1165- 1185. https://doi.org/10.1137/S0036142997318164
- D. K. Gartling, A test problem for outflow boundary conditions-flow over a backward- facing step, Int. J. Numer. Methods Fluids 11 (1990), 953-967. https://doi.org/10.1002/fld.1650110704
- U. Ghia, K. Ghia, and C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48 (1982), 387-411. https://doi.org/10.1016/0021-9991(82)90058-4
- V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979.
- V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, Heidelberg, 1986.
- R. Glowinski, Finite Element Methods for Incompressible Viscous Flow, in: P. G. Ciarlet and J. L. Lions (Ed.), Handbook of Numerical Analysis, Vol. IX, Numerical Methods for Fluids (Part 3), Elsevier Science Publisher, Amsterdam, 2003.
- Y. N. He, A fully discrete stabilized finite-element method for the time-dependent Navier-Stokes problem, IMA J. Numer. Anal. 23 (2003), no. 4, 665-691. https://doi.org/10.1093/imanum/23.4.665
- Y. N. He and J. Li, Convergence of three iterative methods based on finite element discretization for the stationary Navier-Stokes equations, Comput. Meth. Appl. Mech. Engrg. 198 (2009), 1351-1359. https://doi.org/10.1016/j.cma.2008.12.001
- Y. N. He and A. W. Wang, A simplified two-level method for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 17-18, 1568-1576. https://doi.org/10.1016/j.cma.2007.11.032
- F. Hecht, O. Pironneau, and K. Ohtsuka, FreeFem++, Version 3.9-2, http://www.freefem.org. [2010-12-08]
- J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982), no. 2, 275-311. https://doi.org/10.1137/0719018
- S. Kaya, W. Layton, and B. Riviere, Subgrid stabilized defect correction methods for the Navier-Stokes equations, SIAM J. Numer. Anal. 44 (2006), no. 4, 1639-1654. https://doi.org/10.1137/050623942
- A. Labovschii, A defect correction method for the time-dependent Navier-Stokes equations, Numer. Methods Partial Differential Equations 25 (2009), no. 1, 1-25. https://doi.org/10.1002/num.20329
- W. Layton, Solution algorithm for incompressible viscous flows at high Reynolds number, Vestnik Mosk. Gos. Univ. Ser. 15 (1996), 25-35.
- W. Layton, H. Lee, and J. Peterson, A defect-correction method for the incompressible Navier-Stokes equations, Appl. Math. Comput. 129 (2002), no. 1, 1-19. https://doi.org/10.1016/S0096-3003(01)00026-1
- H. K. Lee, Analysis of a defect correction method for viscoelastic fluid flow, Comput. Math. Appl. 48 (2004), no. 7-8, 1213-1229. https://doi.org/10.1016/j.camwa.2004.10.016
- Q. F. Liu and Y. R. Hou, A two-level defect-correction method for Navier-Stokes equations, Bull. Aust. Math. Soc. 81 (2010), no. 3, 442-454. https://doi.org/10.1017/S0004972709000859
- Z. Y. Si, Y. N. He, and K. Wang, A defect-correction method for unsteady conduction convection problems I: spatial discretization, Sci. China Math. 54 (2011), no. 1, 185-204. https://doi.org/10.1007/s11425-010-4022-7
- Z. Y. Si, Y. N. He, and T. Zhang, A defect-correction method for unsteady conduction convection problems II: Time discretization, J. Comput. Appl. Math. 236 (2012), no. 9, 2553-2573. https://doi.org/10.1016/j.cam.2011.12.014
- C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids 1 (1973), no. 1, 73-100. https://doi.org/10.1016/0045-7930(73)90027-3
- R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- K. Wang, A new defect correction method for the Navier-Stokes equations at high Reynolds numbers, Appl. Math. Comput. 216 (2010), no. 11, 3252-3264. https://doi.org/10.1016/j.amc.2010.04.050