DOI QR코드

DOI QR Code

Antioxidant Activity of Porcine Skin Gelatin Hydrolyzed by Pepsin and Pancreatin

  • Chang, Oun Ki (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Ha, Go Eun (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Jeong, Seok-Geun (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Seol, Kuk-Hwan (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Oh, Mi-Hwa (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Dong Wook (Department of Animal Products and Food Science, Kangwon National University) ;
  • Jang, Aera (Department of Animal Products and Food Science, Kangwon National University) ;
  • Kim, Sae Hun (Department of Food Bioscience and Technology, Korea University) ;
  • Park, Beom-Young (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration) ;
  • Ham, Jun-Sang (Animal Products and Development Division, National Institute of Animal Science, Rural Development Administration)
  • Received : 2013.06.30
  • Accepted : 2013.08.09
  • Published : 2013.08.31

Abstract

Gelatin is a collagen-containing thermohydrolytic substance commonly incorporated in cosmetic and pharmaceutical products. This study investigated the antioxidant activity of gelatin by using different reagents, such as 2,2-azinobis-(3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS), 2,2-di (4-tert-octylphenyl)-1-picrylhydrazyl (DPPH), and oxygen radical absorbance capacity-fluorescein (ORAC-FL) in a porcine gelatin hydrolysate obtained using gastrointestinal enzymes. Electrophoretic analysis of the gelatin hydrolysis products showed extensive degradation by pepsin and pancreatin, resulting in an increase in the peptide concentration (12.1 mg/mL). Antioxidant activity, as measured by ABTS, exhibited the highest values after 48-h incubation with pancreatin treatment after pepsin digestion. Similar effects were observed at 48 h incubation, that is, 61.5% for the DPPH assay and 69.3% for the ABTS assay. However, the gallic acid equivalent (GE) at 48 h was $87.8{\mu}M$, whereas $14.5{\mu}M$ GE was obtained using the ABTS and DPPH assays, indicating about sixfold increase. In the ORACFL assay, antioxidant activity corresponding to $45.7{\mu}M$ of trolox equivalent was found in the gelatin hydrolysate after 24 h hydrolysis with pancreatin treatment after pepsin digestion, whereas this activity decreased at 48 h. These antioxidant assay results showed that digestion of gelatin by gastrointestinal enzymes prevents oxidative damage.

Keywords

References

  1. Ao, J. and Li, B. (2012) Amino acid composition and antioxidant activities of hydrolysates and peptide fractions from porcine collagen. Food Sci. Technol. Int. 18, 425-434. https://doi.org/10.1177/1082013211428219
  2. Becker, G. L. (1993) Preserving food and health: Antioxidants make functional, nutritious preservatives. Food Processing 12, 54-56.
  3. Calabrese, V., Lodi, R., Tonon, C., D'Agata, V., Sapienza, M., Scapagnini, G., Mangiameli, A., Pennisi, G., Giuffrida Stella, A. M., and Butterfield, D. A. (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedrich's ataxia. J. Neurological Sci. 233, 145-162. https://doi.org/10.1016/j.jns.2005.03.012
  4. Chang, O. K., Humbert, G., Gaillard, J. L., and Lee, B. O. (2006) Characterization of equine milk and cheese making. Korean J. Food Sci. An. 26, 368-374.
  5. Chang, O. K., Perrin, C., Galia, W., Saulnier, F., Miclo, L., Roux, E., Driou, A., Humbert, G., and Dary, A. (2012) Release of the cell-envelope protease PrtS in the growth medium of Streptococcus thermophilus 4F44. Int. Dairy J. 23, 91-98. https://doi.org/10.1016/j.idairyj.2011.10.014
  6. Chang, O. K., Ha, G. E., Han, K. S., Seol, K. H., Kim, H. W., Jeong, S. G., Oh, M. H., Park, B. Y., and Ham, H. S. (2013a). Novel antioxidant peptide derived from the ultrafiltrate of ovomucin hydrolysate. J. Agri. Food Chem. 61, 7294-7300. https://doi.org/10.1021/jf4013778
  7. Chang, O. K., Seol, K. H., Jeong, S. G., Oh, M. H., Park, B. Y., Perrin, C., and Ham, J. S. (2013b) Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. J. Dairy. Sci. DOI: 10. 3168/jds.2013-6687 https://doi.org/10.3168/jds.2013-6687
  8. Cho, Y. (2009) Comparative study of lactic acid bacteria for antioxidative and casein phosphopeptide-producing activities. Graduate School, Chonnam National University, Korea.
  9. Church, F. C., Swaisgood, H. E., Porter, D. H., and Catignani, G. L. (1983) Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66, 1219-1227. https://doi.org/10.3168/jds.S0022-0302(83)81926-2
  10. Cole, C. G. B. (2000) Gelatin. In: Encyclopedia of Food Science and Technology. Francis, F. J. (ed) John Wiley & Sons, New York, pp. 1183-1188.
  11. Davalos, A., Miguel, M., Bartolome, B., and Lopez-Fandino, R. (2004) Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Protect. 67, 1939-1944.
  12. de Mejia, E. and de Lumen, B. O. (2006) Soybean bioactive peptides: A new horizon in preventing chronic diseases. Sexuality, Reproduction & Menopause 4, 91-95. https://doi.org/10.1016/j.sram.2006.08.012
  13. Frister, H., Meisel, H., and Schlimme, E. (1988) OPA method modified by use of N,N-dimethyl-2-mercaptoethylammonium chloride as thiol component. Fresenius' J. Anal. Chem. 330, 631-633. https://doi.org/10.1007/BF00473782
  14. Gimenez, B., Aleman, A., Montero, P., and Gomez-Guillen, M. C. (2009) Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem. 114, 976-983. https://doi.org/10.1016/j.foodchem.2008.10.050
  15. Gomez-Guillen, M. C., Gimenez, B., Lopez-Caballero, M. E., and Montero. M. P. (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 25, 1813-1827. https://doi.org/10.1016/j.foodhyd.2011.02.007
  16. Hernandez-Ledesma, B., Davalos, A., Bartolome, B., and Amigo, L. (2005) Preparation of antioxidant enzymatic hydrolysates from $\alpha$-lactalbumin and $\beta$-lactoglobulin. identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 53, 588-593. https://doi.org/10.1021/jf048626m
  17. Je, J. Y., Park, P. J., and Kim, S. K. (2004). Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem. Toxicol.42, 381-387. https://doi.org/10.1016/j.fct.2003.10.001
  18. Kim, D. W., Park, K., Ha, G. E., Jung, J. R., Chang, O. K., Ham, J. S., Jeong, S. G., Park, B. Y., Song, J., and Jang, A. (2013) Anti-oxidative and neuroprotective activities of pig skin gelatin hydrolysates. Korean J. Food Sci. An. 33, 258-267. https://doi.org/10.5851/kosfa.2013.33.2.258
  19. Kim, S., Kim, Y., Byun, H., Nam, K., Joo, D., and Shahidi, F. (2001) Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska Pollack skin. J. Agric. Food Chem. 49, 1984-1989. https://doi.org/10.1021/jf000494j
  20. Korhonen, H. (2009) Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 1, 177-187. https://doi.org/10.1016/j.jff.2009.01.007
  21. Kullisaar, T., Songisepp, E., Mikelsaar, M., Zilmer, K., Vihalemm, T., and Zilmer, M. (2003) Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. British J. Nutr. 90, 449-456. https://doi.org/10.1079/BJN2003896
  22. Li, B., Chen, F., Wang, X., Ji, B., and Wu, Y. (2007) Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 102, 1135-1143. https://doi.org/10.1016/j.foodchem.2006.07.002
  23. Lin, L. and Li, B. (2006) Radical scavenging properties of protein hydrolysates from Jumbo flying squid (Dosidicus eschrichitii Steenstrup) skin gelatin. J. Sci. Food Agric. 86, 2290-2295. https://doi.org/10.1002/jsfa.2600
  24. Madhujith, T., Izydorczyk, M., and Shahidi, F. (2006) Antioxidant properties of pearled barley fractions. J. Agric. Food Chem. 54, 3283-3289. https://doi.org/10.1021/jf0527504
  25. Mark, S. and Alger, M. (1997) Polymer science dictionary. Springer. p. 152.
  26. Mendis, E., Rajapakse, N., Byun, H., and Kim, S. (2005) Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77, 2166-2178. https://doi.org/10.1016/j.lfs.2005.03.016
  27. Miguel, M., Contreras, M. M., Recio, I., and Aleixandre, A. (2009) ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chem. 112, 211-214. https://doi.org/10.1016/j.foodchem.2008.05.041
  28. Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V., and Gobbetti, M. (2003) Angiotensin I-converting-enzymeinhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. Appl. Environ. Microbiol. 69, 5297-5305. https://doi.org/10.1128/AEM.69.9.5297-5305.2003
  29. Nimalaratne, C., Lopes-Lutz, D., Schieber, A., and Wu, J. (2011) Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 129, 155-161. https://doi.org/10.1016/j.foodchem.2011.04.058
  30. Oboh, G., Adefegha, S. A., Ademosun, A. O., and Unu, D. (2010) Effects of hot water treatment on the phenolic photochemicals and antioxidant activities of lemon grass (Cymbopogon itratus). Electron. J. Environ. Agric. Food Chem. 9, 503-513.
  31. Ou, B., Hampsch-Woodill, M., and Prior, R. L. (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619-4626. https://doi.org/10.1021/jf010586o
  32. Prior, R. L., Hoang, H., Gu, L., Wu, X., Bacchiocca, M., Howard, L., Hampsch-Woodill, M., Huang, D., Ou, B., and Jacob, R. (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51, 3273-3279. https://doi.org/10.1021/jf0262256
  33. Que, F., Mao, L., Zhu, C., and Xie, G. (2006) Antioxidant properties of Chinese yellow wine, its concentrate and volatiles. LWT-Food Sci. Technol. 39, 111-117. https://doi.org/10.1016/j.lwt.2005.01.001
  34. Rajapakse, N., Mendis, E., Jung, W. K., Je, J. Y., and Kim, S. K. (2005) Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 38, 175-182. https://doi.org/10.1016/j.foodres.2004.10.002
  35. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol.Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  36. Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., and Xue, S. J. (2008) Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108, 727-736. https://doi.org/10.1016/j.foodchem.2007.11.010
  37. Rho, S. J., Lee, J. S., Chung, Y. I., Kim, Y. W., and Lee, H. G. (2009) Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Proc. Biochem. 44, 490-493. https://doi.org/10.1016/j.procbio.2008.12.017
  38. Samaraweera, H., Zhang, W. G., Lee E. J., and Ahn, D. U. (2011) Egg yolk phosvitin and functional phosphopeptidesreview. J. Food Sci. 76, 143-150.
  39. Sarmadi, B. H. and Ismail, A. (2010) Antioxidative peptides from food proteins: A review. Peptides. 31, 1949-1956. https://doi.org/10.1016/j.peptides.2010.06.020
  40. Singh, S., Rao, K. V. Rama., Venugopal, K., and Manikandan, R. (2002) Alteration in dissolution characteristics of gelatincontaining formulations: A review of the problem, test methods, and solutions. Pharmaceutical Technol. 26, 36-58.
  41. Wellman-Labadie, O., Picman, J., and Hincke, M. T. (2008) Comparative antibacterial activity of avian egg white protein extracts. Br. Poult. Sci. 49, 125-132. https://doi.org/10.1080/00071660801938825
  42. Yang, J., Ho, H., Chu, Y., and Chow, C. (2008) Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem. 110, 128-136. https://doi.org/10.1016/j.foodchem.2008.01.072

Cited by

  1. Bioactivity of bovine lung hydrolysates prepared using papain, pepsin, and Alcalase 2017, https://doi.org/10.1111/jfbc.12406
  2. Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain vol.35, pp.3, 2015, https://doi.org/10.5851/kosfa.2015.35.3.360
  3. Microencapsulation of stearidonic acid soybean oil in complex coacervates modified for enhanced stability vol.51, 2015, https://doi.org/10.1016/j.foodhyd.2015.05.008
  4. Stability of Antiradical Activity of Protein Extracts and Hydrolysates from Dry-Cured Pork Loins with Probiotic Strains of LAB vol.10, pp.4, 2018, https://doi.org/10.3390/nu10040521
  5. Anti-Oxidative and Anti-Aging Activities of Porcine By-Product Collagen Hydrolysates Produced by Commercial Proteases: Effect of Hydrolysis and Ultrafiltration vol.24, pp.6, 2013, https://doi.org/10.3390/molecules24061104
  6. Pig Skin Gelatin Hydrolysates Attenuate Acetylcholine Esterase Activity and Scopolamine-induced Impairment of Memory and Learning Ability of Mice vol.40, pp.2, 2013, https://doi.org/10.5851/kosfa.2020.e3
  7. Development of gum odina‐gelatin based antimicrobial loaded biodegradable spongy scaffold: A promising wound care tool vol.138, pp.12, 2013, https://doi.org/10.1002/app.50057
  8. Distinctive characteristics of collagen and gelatin extracted from Dosidicus gigas skin vol.56, pp.7, 2013, https://doi.org/10.1111/ijfs.14968