DOI QR코드

DOI QR Code

Study on Computational Fluid Dynamics(CFD) Simulation for De-NOx in the incinerator at Taebaek city

태백시 소각로 내 NOx 제거를 위한 전산유체역학(CFD) simulation 연구

  • Kim, Ji-Hyun (Dept. of Environmental Engineering, College of Engineering, Kangwon National University) ;
  • Park, Young-Koo (Dept. of Environmental Engineering, College of Engineering, Kangwon National University)
  • Received : 2013.05.27
  • Accepted : 2013.06.29
  • Published : 2013.06.30

Abstract

The feed air to MSW incinerator influences on the residence time of combustion gas, removal of unburnt ash and exiting gas temperature. Thus the secondary air volume could present sufficient residence time which can maintain the exiting temperature over $850^{\circ}C$. The secondary air also relates directly with the turbulence in the inside of combustion chamber, which finally provide the stable combustion condition. The present study designed a modern incinerator for a field scale, and evaluation of the potential amount of primary air based on the daily combustible quantity. From the evaluated primary air volume, the secondary air flow rate could be estimated, and its dynamic behavior was verified. In addition, the obtained air volume enables to find an optimum operation condition of the combustion. As a result of the CFD simulation, the air ratio 75 : 25 between primary and secondary air amount was optimum ratio than design criteria 72 : 28. And the flow velocity ratio of front-back of secondary air jet nozzle was found excellent at 1 : 3. In addition, the result of applied to the plant, the removal efficiency of NOx and CO generation would concentration of CO.

소각로 내 공기 주입은 연소가스의 체류시간, 미연분 제거 및 출구가스 온도 제어 등의 많은 영향을 끼친다. 이에 따라 2차 연소용 공기량을 변화시켜 충분한 체류시간을 확보하고 $850^{\circ}C$ 이상의 출구가스 온도를 유지하며, 높은 turbulent를 관리함으로써 안정적인 소각로 운영이 되어야만 한다. 본 연구에서는 현재 운영 중인 소각장의 소각로를 설계하고, 평균 일일 소각량을 바탕으로 1차 공기량을 산정한 후 2차 공기량을 변화하여 CFD 프로그램(Fluent)을 통해 이론적인 공기유동을 규명하였다. 또한 산정된 공기량을 바탕으로 실제 운영 중인 소각장에 적용함으로써 최적의 연소조건을 도출하였다. CFD simulation 결과 1.2차 공기비는 75:25가 최적의 결과로 나타났으며, 2차 공기 분사노즐 전 후면 유속 비는 1:3에서 가장 우수한 결과로 나타났다. 또한, 실제 운영 중인 소각로에 적용한 결과 적절한 소각로 출구온도는 질소산화물 제거 효율 및 일산화탄소 발생농도에 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Santos, A. M, Study of MSW Incinerator Overall operation and on-site measurement over the grate STEV Project Report, Royal Institute Publishing Company, Sweden No. FBT-91/14, (2003)
  2. V. Nasserazadeh et al., Three-Dimensional Modeling of The Convertry MSW Incinerator Using Computational Fluid Dynamics And Experiment Date, Trans IChemE (1993)
  3. J. Swithenbank et al., Effect of High Speed Secondary Air Jets on the Overall Performance of a Large MSW Incinerator with a Vertial Shaft, Combust. Sci. and Tech, Vol. 92. p. 389-422 (1993) https://doi.org/10.1080/00102209308907680
  4. T, Klasen and K. Gorner, Numerical Simulation and Optimisation of a Larg Municipal Solid Waste Incineration Plant, The 2nd Int. Symp. Incineration and Fuel Gas Treatment Technologies (2011)
  5. Y. Kori, R. Takeya, Cross Jet Mixing and Its Effects on Combustion Performance in MSW Incinerators with Natural Gas Reburning, The 3rd Int. Symp. Incineration and Fuel Gas Treatment Technologies (1999)
  6. V. Nasserazadeh, J. Swithenbank, and B. Jones, Design Opimization of a large municipal Solid Waste Incinerator, Waste Management, Vol.11, p. 249-261 (1991) https://doi.org/10.1016/0956-053X(91)90072-D
  7. S. M. Choi, S. K. Kim, D. H. Shin, Cold Flow Simulation of Municipal Waste Incinerators, 25th Symp. Comd (1994)
  8. G.Y. Hwang, A Study of Numerical Simulation on Flow Field in the Combustion Chamber of Incinerator According to Air Indection Angles (2004)
  9. Robinson, G., A Tree Dimentional Analystical Model of a Large Tangentially Fired Furnace", J. of the Institute of Energy, Vol. 166, p. 116-150 (1985)