DOI QR코드

DOI QR Code

Comparative Study on Interfacial Traps in Organic Thin-Film Transistors According to Deposition Methods of Organic Semiconductors

  • Park, Jae-Hoon (Department of Electronic Engineering, Hallym University) ;
  • Bae, Jin-Hyuk (School of Electronics Engineering, Kyungpook National University)
  • Received : 2013.05.21
  • Accepted : 2013.06.26
  • Published : 2013.06.30

Abstract

We analysed interfacial traps in organic thin-film transistors (TFTs) in which pentacene and 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) organic semiconductors were deposited by means of vacuum-thermal evaporation and drop-coating methods, respectively. The thermally-deposited pentacene film consists of dentritic grains with the average grain size of around 1 m, while plate-like crystals over a few hundred microns are observed in the solution-processed TIPS-pentacene film. From the transfer characteristics of both TFTs, lower subthreshold slope of 1.02 V/decade was obtained in the TIPS-pentacene TFT, compared to that (2.63 V/decade) of the pentacene transistor. The interfacial trap density values calculated from the subthreshold slope are about $3.4{\times}10^{12}/cm^2$ and $9.4{\times}10^{12}/cm^2$ for the TIPS-pentacene and pentacene TFTs, respectively. Herein, lower subthreshold slope and less interfacial traps in TIPS-pentacene TFTs are attributed to less domain boundaries in the solution-processed TIPS-pentacene film.

Keywords

References

  1. G. H. Gelinck, H. E. Huitema, E. V. Veenendall, E. Cantatore, L. Schrijnemakers, J. B. P. H. V. D. Putten, T. C. T. Genus, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. V. Rens, D. M. De. Leeuw, "Flexible Active-Matrix Displays and Shift Registers Based on Solution-Processed Organic Transistors", Nat. Mater. 3, 106 (2004). https://doi.org/10.1038/nmat1061
  2. Z.-T. Zhu, J. T. Mason, R. Dieckmann, G. G. Malliaras, "Humidity Sensors Based on Pentacene Thin-Film Transistors", Appl. Phys. Lett. 81, 4643 (2002). https://doi.org/10.1063/1.1527233
  3. D. Voss, "Cheap and Cheerful Circuits", Nature 407, 442 (2000). https://doi.org/10.1038/35035212
  4. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, "Stretchable Active-Matrix Organic Light-Emitting Diode Display Using Printable Elastic Conductors", Nat. Mater. 8, 494 (2009). https://doi.org/10.1038/nmat2459
  5. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, "High-Resolution Inkjet Printing of All-Polymer Transistor Circuits", Science 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  6. H. B. Akkerman, H. Li, Z. Bao, "TIPS-Pentacene Crystalline Thin Film Growth", Org. Electron. 13, 2056 (2012). https://doi.org/10.1016/j.orgel.2012.06.019
  7. H. Sirringhaus, R. J. Wilson, R. H. Friend, "Mobility Enhancement in Conjugated Polymer Field-Effect Transistors Through Chain Alignment in a Liquid-Crystalline Phase", Appl. Phys. Lett. 77, 406 (2000). https://doi.org/10.1063/1.126991
  8. W.-Y. Chou, H.-L. Cheng, "High Mobility Pentacene Thin-Film Transistors on Photopolymer Modified Dielectrics", Adv. Funct. Mater. 14, 811 (2004). https://doi.org/10.1002/adfm.200305047
  9. J.-H. Bae, J. Kim, W.-H. Kim, S.-D. Lee, "Importance of the Functional Group Density of a Polymeric Gate Insulator for Organic Thin-Film Transistors", Jpn. J. Appl. Phys. 46, 385 (2007). https://doi.org/10.1143/JJAP.46.385
  10. M-H. Kim, S.-P. Noh, C.-M. Keum, J.-H. Bae, S.-D. Lee, "Bias Voltage Effect on Electrical Properties of N-Type Polymeric Field Effect Transistors with Dual Gate Electrodes", Org. Electron. 13, 2365 (2012). https://doi.org/10.1016/j.orgel.2012.06.032
  11. S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, Y. Zyung, "Hysteresis of Pentacene Thin-Film Transistors and Inverters with Cross-Linked Poly(4-vinylphenol) Gate Dielectrics", Appl. Phys. Lett. 90, 173512 (2007). https://doi.org/10.1063/1.2733626
  12. C.-M. Keum, J.-H. Bae, W.-H. Kim, M.-H. Kim, J. Park, S.-D. Lee, "Effect of Thermo-Gradient-Assisted Solvent Evaporation on the Enhancement of the Electrical Properties of 6,13-Bis(triisopropylsilyethynyl)-Pentacene Thin-Film Transistors", J. Korean Phys. Soc. 58, 1479 (2011). https://doi.org/10.3938/jkps.58.1479
  13. A.-L. Deman, M. Erouel, D. Lallemand, M. Phaner-Goutorbe, P. Lang, J. Tardy, "Growth Related Properties of Pentacene Thin Film Transistors with Different Gate Dielectrics", J. Non-Cryst. Solids 354, 1598 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.027
  14. J.-H. Bae, W.-H. Kim, C.-J. Yu, and S.-D. Lee, "Reduction in Contact Resistance of Pentacene Thin-Film Transistors by Formation of an Organo-Metal Hybrid Interlayer", Jpn. J. Appl. Phys. 48, 020209 (2009). https://doi.org/10.1143/JJAP.48.020209
  15. J. Park, J.-H. Bae, W.-H. Kim, S.-D. Lee, J. S. Gwag, D. W. Kim, J. C. Noh, J. S. Choi, "The Surface Energy-Dictated Initial Growth of a Pentacene Film on a Polymeric Adhesion Layer for Field-Effect Transistors", Solid-State Electron. 54, 1650 (2010). https://doi.org/10.1016/j.sse.2010.08.004
  16. S. Y. Cho, J. M. Ko, J. Y. Jung, J. Y. Lee, D. H. Choi, C. Lee, "Ink-Jet Printed Organic Thin Film Transistors Based on TIPS Pentacene with Insulating Polymers", J. Mater. Chem. C 1, 914 (2013). https://doi.org/10.1039/c2tc00360k
  17. M. W. Lee, G. S. Ryu, Y. U. Lee, C. Pearson, M. C. Petty, C. K. Song, "Control of Droplet Morphology for Ink-Jet-Printed TIPS-Pentacene Transistors", Microelectron. Eng. 95, 1 (2012). https://doi.org/10.1016/j.mee.2012.01.006
  18. C. D. Dimitrakopoulos, D. J. Mascaro, "Organic Thin-Film Transistors: A Review of Recent Advances", IBM J. Res. Dev. 45, 11 (2001). https://doi.org/10.1147/rd.451.0011
  19. J. Park, Y.-S. Jeong, K.-S. Park, L.-M. Do, J.-H. Bae, J. S. Choi, C. Pearson, M. Petty, "Subthreshold Characteristics of Pentacene Field-Effect Transistors Influenced by Grain Boundaries", J. Appl. Phys. 111, 104512 (2012). https://doi.org/10.1063/1.4721676
  20. J. B. Choi, D. C. Yun, Y. I. Park, J. H. Kim, "Properties of Hydrogenated Amorphous Silicon Thin Film Transistors Fabricated at 150${^{\circ}C}$", J. Non-Cryst. Solids 266, 1315 (2000).
  21. A. Rolland, J. Richard, J. P. Kleider, D. Mencaraglia, "Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations", J. Electrochem. Soc. 140, 3679 (1993). https://doi.org/10.1149/1.2221149