DOI QR코드

DOI QR Code

Analysis and comparison of general compositions, amino acids, fatty acids and collagen of abalone harvested in three different regions in Korea

한국에서 생산되는 전복의 영양성분 비교 분석

  • Li, Jinglei (Department of Food Science and Technology, Mokpo National University) ;
  • Kim, Bo-Sub (Department of Food Science and Technology, Mokpo National University) ;
  • Kang, Seong-Gook (Department of Food Science and Technology, Mokpo National University)
  • 이정뢰 (전라남도 무안군 국립목포대학교 식품공학과) ;
  • 김보섭 (전라남도 무안군 국립목포대학교 식품공학과) ;
  • 강성국 (전라남도 무안군 국립목포대학교 식품공학과)
  • Received : 2013.06.05
  • Accepted : 2013.07.04
  • Published : 2013.08.30

Abstract

In this study, the general compositions, amino acids, fatty acids and collagen content of three abalones, which were harvested in Wando, Heuksando and Jeju Island in Korea, were analyzed and compared. The abalone body and viscera were separated from each other and the physicochemical properties were investigated. The moisture and protein contents of the viscera were lower than that of the body; while the lipid, carbohydrate, and mineral contents were higher. The general compositions and mineral contents also presented fluctuation among the three abalone groups. The amino acid content via hydrolysis in the abalone viscera ranged from 93.16 to 127.02 mg/g, which was lower than the amino acid content of the abalone body of approximately 145 mg/g. However, the free amino acids level in the abalone viscera ranged from 16.81 to 20.10 mg/g, which was higher than that of the abalone body level of approximately 7.90 to 10.59 mg/g. The fatty acid analysis revealed that while the saturated fatty acid percentages in the abalone body were higher than in the abalone viscera, the percentages of the monoenoic and polyenoic fatty acids of the body were significantly lower. The body of the abalone harvested in Wando contained the highest level of collagen ($2.26{\pm}0.46mg/g$), followed by the abalone harvested in Jeju Island and Heuksando. The abalone viscera contained much lower collagen, which ranged from $0.37{\pm}0.15mg/g$ to $0.20{\pm}0.03mg/g$. The results of this study will provide useful information for the future research of abalone.

전복의 기능성과 성분에 대한 연구와 한국 전복의 지역별 성분특성에 대한 연구는 거의 없는 실정이다. 본 연구에서는 한국의 주요 전복 생산지인 완도를 중심으로 남쪽인 제주도와 북쪽인 흑산도 전복의 육과 내장에 대하여 일반성분, 미네랄, 아미노산, 지방산 및 콜라겐 함량을 비교 분석하였다. 전복내장 중의 수분과 단백질 함량은 전복육에 비하여 낮은 경향을 보였으나 지방과 탄수화물 함량은 더 높았다. 지역간 전복의 일반성분과 미네랄 함량은 다소 차이가 있는 것으로 나타났으며 수온이 낮은 지역일수록 지방함량이 약간 높았다. 전복내장의 구성아미노산 함량은 93.6~127.02 mg/g이었으며 이는 전복육의 평균 145 mg/g에 비해 낮은 편이었다. 반면에 전복내장의 유리아미노산 함량은 16.81~20.10 mg/g으로 전복육의 7.90~10.59 mg/g에 비하여 2배 높은 값을 보였다. 전복육의 총 구성아미노산 지역별 차이는 없으며 전복내장의 결과를 살펴볼 때 완도와 흑산도 높고 제주도 낮은 것을 나타났다. 전복육 총 유리아미노산은 완도 전복은 가장 높았으며 이어서 흑산도와 제주도 순이었고 내장의 경우는 완도, 제주도와 흑산도 순으로 총 유리아미노산 함량이 낮아졌다. 전복육의 지방산조성은 불포화지방산이 약 41%로 포화지방산 약 31%에 비하여 높았으며, 전복육보다 전복내장이 높은 결과를 보였다. 콜라겐 함량은 완도 전복육에서 $2.26{\pm}0.46mg/g$으로 가장 높았으며 이어서 제주도와 흑산도 순이었다. 전복내장에서는 $0.20{\pm}0.03{\sim}0.37{\pm}0.15mg/g$으로 전복육보다 낮은 값을 보였다. 본 연구 결과는 향후 전복에 관한 연구에서 유용한 정보로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Cook PA, Roy Gordon H (2010) World abalone supply, markets, and pricing. J Shellfish Res, 29, 569-571 https://doi.org/10.2983/035.029.0303
  2. Allsopp M, Flores-Aguilar R, Watts E (2011) Abalone Culture. In: Recent Advances and New Species in Aquaculture, Ravi F, Bruce P (Editor), Wiley-Blackwell, Hoboken, NJ, USA, p 231-251
  3. Lee K, Shin E, Lee H, Kim M, Kim K, Byun M, Lee J, Kim J, Ahn D, Lyu E (2008) Quality characteristics of abalone porridge with viscera. J Korean Soc Food Sci Nutr, 37, 103-108 https://doi.org/10.3746/jkfn.2008.37.1.103
  4. Kim SK, Pallela R (2012) Medicinal foods from marine animals: current status and prospects. Adv Food Nutr Res, 65, 1-9 https://doi.org/10.1016/B978-0-12-416003-3.00001-9
  5. Kim HL, Kang SG, Kim IC, Kim SJ, Kim DW, Ma SJ, Gao T, Li H, Kim MJ, Lee TH (2006) In vitro anti-hypertensive, antioxidant and anticoagulant activities of extracts from Haliotis discus hannai. J Korean Soc Food Sci Nutr, 35, 835-840 https://doi.org/10.3746/jkfn.2006.35.7.835
  6. Gonzalez M, Caride B, Lamas A, Taboada C (2001) Nutritional value of the marine invertebrates Anemonia viridis and Haliothis tuberculata and effects on serum cholesterol concentration in rats. J Nutr Biochem, 12, 512-517 https://doi.org/10.1016/S0955-2863(01)00167-X
  7. Maoka T, Etoh T, Akimoto N, Yasui H (2011) Novel carotenoid pyropheophorbide A esters from abalone. Tetrahedron Lett, 52, 3012-3015 https://doi.org/10.1016/j.tetlet.2011.03.146
  8. Peng WD, Chen QI, Zhao JH (2004) Effects of enzymolytic extracts of abalone on learning and memory in mice. Acta Nutrimenta Sinica, 26, 45-48
  9. Li G, Chen S, Wang Y, Xue Y, Chang Y, Li Z, Wang J, Xue C (2011) A novel glycosaminoglycan-like polysaccharide from abalone Haliotis discus hannai Ino: Purification, structure identification and anticoagulant activity. Int J Biol Macromol, 49, 1160-1166 https://doi.org/10.1016/j.ijbiomac.2011.09.017
  10. Viana MT, López LM, García-Esquivel Z, Mendez E (1996) The use of silage made from fish and abalone viscera as an ingredient in abalone feed. Aquacult, 140, 87-98 https://doi.org/10.1016/0044-8486(95)01196-X
  11. Zhou DY, Tong L, Zhu BW, Wu HT, Qin L, Tan H, Murata Y (2011) Extraction of lipid from abalone (Haliotis discus hannai Ion) gonad by supercritical carbon dioxide and enzyme-assisted organic solvent methods. J Food Proces Pre, 36, 126-132
  12. Sun L, Zhu B, Li D, Wang L, Dong X, Murata Y, Xing R, Dong Y (2010) Purification and bioactivity of a sulphated polysaccharide conjugate from viscera of abalone Haliotis discus hannai Ino. Food Agr Immunol, 21, 15-26 https://doi.org/10.1080/09540100903418859
  13. Ping K, Qiukuan W (2006) Enzymes extracted from abalone viscera and its potential application. Fisheries Sci, 3, 13-19
  14. Zhu BW, Wang LS, Zhou DY, Li DM, Sun LM, Yang JF, Wu HT, Zhou XQ, Tada M (2008) Antioxidant activity of sulphated polysaccharide conjugates from abalone (Haliotis discus hannai Ino). Eur Food Res Technol, 227, 1663-1668 https://doi.org/10.1007/s00217-008-0890-2
  15. Zhou DY, Zhu BW, Qiao L, Wu HT, Li DM, Yang JF, Murata Y (2012) In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food Bioprod Process, 90, 148-154 https://doi.org/10.1016/j.fbp.2011.02.002
  16. Li J, Tong T, Ko DO, Chung DO, Jeong WC, Kim JE, Kang SG (2012) Anti-oxidant and anti-skin-aging effects of abalone viscera extracts in human dermal fibroblasts. Korean J Food Preserv, 19, 463-469 https://doi.org/10.11002/kjfp.2012.19.4.463
  17. AOAC (1996) Official Methods of Analysis. 15th ed, Association of Official Analytical Chemists, Washington DC, USA, p 317-324
  18. Holman W (1943) A new technique for the determination of phosphorus by the molybdenum blue method. Biochem J, 37, 256-259 https://doi.org/10.1042/bj0370256
  19. Crouch SR, Malmstadt H (1967) Mechanistic investigation of molybdenum blue method for determination of phosphate. Analyt Chem, 39, 1084-1089 https://doi.org/10.1021/ac60254a027
  20. Li XX, Han LJ, Chen LJ (2008) In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. J Sci Food Agr, 88, 1660-1666 https://doi.org/10.1002/jsfa.3264
  21. Lu P, Li D, Yin J, Zhang L, Wang Z (2008) Flavour differences of cooked longissimus muscle from Chinese indigenous pig breeds and hybrid pig breed (Duroc×Landrace×Large White). Food Chem, 107, 1529-1537 https://doi.org/10.1016/j.foodchem.2007.10.010
  22. Bligh E, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37, 911-917 https://doi.org/10.1139/o59-099
  23. AOCS (1997) Preparation of Methyl Esters of Fatty Acids, Official and Recommended Practices of the AOCS, 5th ed, AOCS Press, Urbana, IL, USA, p 2-66.
  24. Woessner J (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys, 93, 440-447 https://doi.org/10.1016/0003-9861(61)90291-0
  25. Brown MR, Sikes AL, Elliott NG, Tume RK (2008) Physicochemical factors of abalone quality: a review. J Shellfish Res, 27, 835-842 https://doi.org/10.2983/0730-8000(2008)27[835:PFOAQA]2.0.CO;2
  26. Lee YJ, Park JW, Park IB, Shin GW, Jo YC, Koh SM, Kang SG, Kim JM, Kim HS (2009) Comparison of physicochemical properties of meat and viscera with respect to the age of abalone (Haliotis discus hannai). Korean J Food Preserv, 16, 849-860
  27. Lou QM, Wang YM, Xue CH (2012) Lipid and fatty acid composition of two species of abalone, Haliotis discus hannai Ino and Haliotis diversicolor reeve. J Food Biochem, 6, 1-6
  28. Chiou TK, Lai MM, Shiau CY (2001) Seasonal variations of chemical constituents in the muscle and viscera of small abalone fed different diets. Fisheries Sci, 67, 146-156 https://doi.org/10.1046/j.1444-2906.2001.00211.x
  29. Kraan S, Guiry MD (2000) Strain selection in the edible brown seaweed Alaria esculenta: Genetic fingerprinting and hybridization studies under laboratory conditions. Marine Institute, Dublin, Ireland. p 3-8
  30. Kim SK (2013) Marine Nutraceuticals: Prospects and Perspectives. CRC Press, Boca Raton, FL, USA. p 57-71
  31. King RH, Rayner CJ, Kerr M, Gorfine HK, McShane PE (1996) The composition and amino acid balance of abalone (Haliotis rubra) tissue. Aquac, 140, 109-113 https://doi.org/10.1016/0044-8486(95)01192-7
  32. Huxtable R (1992) Physiological actions of taurine. Physiol Rev, 72, 101-163 https://doi.org/10.1152/physrev.1992.72.1.101
  33. Chesney R (1985) Taurine: its biological role and clinical implications. Adv Pediatr, 32, 1-42
  34. Ha J, Song D, Lee E (1982) Taste compounds of abalone, Haliotis diversicolor japonica. Bull Korean Fisheries Soc, 15, 117-122
  35. Dunstan GA, Baillie HJ, Barrett SM, Volkman JK (1996) Effect of diet on the lipid composition of wild and cultured abalone. Aquac, 140, 115-127 https://doi.org/10.1016/0044-8486(95)01191-9
  36. Lizenko MV, Regerand TG, Bakhirev AM, Petrovskii VI, Lizenko EI (2007) Content of the main lipid components in blood serum lipoproteins of human and of some animal species. J Evol Biochem Phys, 43, 183-190 https://doi.org/10.1134/S0022093007020068
  37. Berra, B (1993) Trans fatty acids in infantile nutrition. Nutr Res, 13, 47-59 https://doi.org/10.1016/S0271-5317(05)80283-0
  38. Rudel LL, Sawyer JK, Bray GA, Ryan DH (1996) Dietary monounsaturated fat and the development of coronary artery atherosclerosis in African green monkeys. Nutr Genes Heart Dis, 24, 161-176
  39. Yoneda C, Hirayama Y, Nakaya M, Matsubara Y, Irie S, Hatae K, Watabe S (2001) The occurrence of two types of collagen pro α‐chain in the abalone Haliotis discus muscle. Eur J Biochem, 261, 714-721 https://doi.org/10.1046/j.1432-1327.1999.00313.x
  40. Kato H, Rhue MR, Nishimura T (1989) Role of free amino acids and peptides in food taste. Flavor Chem, 388, 158-174 https://doi.org/10.1021/bk-1989-0388.ch013

Cited by

  1. Cytotoxic and Antioxidant Activities of Abalone (Haliotis discus hannai) Extracts vol.24, pp.7, 2014, https://doi.org/10.5352/JLS.2014.24.7.737
  2. Preparation of Novel Iodized Salt with Natural Iodine-Rich Sources by Spray Drying vol.83, pp.6, 2018, https://doi.org/10.1111/1750-3841.14163
  3. Method vol.83, pp.6, 2018, https://doi.org/10.1111/1750-3841.14173
  4. 삿갓조개류의 식품 영양성분 특성 vol.50, pp.4, 2013, https://doi.org/10.5657/kfas.2017.0453
  5. 양식 참전복(Haliotis discus hannai) 열성패 추출물의 제조 및 품질특성 vol.51, pp.6, 2013, https://doi.org/10.5657/kfas.2018.0640
  6. Characteristics of pressurized hot water extract from abalone muscle and the antioxidant ability during simulated digestion in vitro vol.57, pp.11, 2013, https://doi.org/10.1007/s13197-020-04441-2
  7. Nutritional Composition and Taste Properties of Abalone and Short-Neck Clam in Wando vol.50, pp.9, 2013, https://doi.org/10.3746/jkfn.2021.50.9.1010