DOI QR코드

DOI QR Code

Histological Characteristics of Somatic Embryos in Melon (Cucumis melo L.)

멜론 체세포배의 조직학적 특징

  • Choi, Pil Son (Medicinal Plant Transformation Center, Department of Oriental Pharmaceutical Development, Nambu University) ;
  • Kwon, Suk Yoon (Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 최필선 (남부대학교 한방제약개발학과 약용식물형질전환연구소,) ;
  • 권석윤 (한국생명공학연구원 그린바이오연구센터)
  • Received : 2013.03.11
  • Accepted : 2013.05.30
  • Published : 2013.08.31

Abstract

Hypocotyls explants of melon seedling were cultured on Murashige and Skoog's (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg/L benzyl aminopurine (BA) for 6 weeks to produce somatic embryos. In somatic embryos produced through intervening bright yellow friable (BYF) from the explants, somatic embryos with two-cotyledon (26%) and horn-type cotyledon (74%) were observed. The procambial strand of cotyledons was originated from circular procambial tissues of lower hypocotyls. The circular procambial independently divided into two procambial strand at the edge of cotyledonary-node, and then connected to each cotyledon to form somatic embryos with two-cotyledon. When cotyledon was horn-type, the circular procambial strand in lower hypocotyls would continuously remain connected to the cotyledon. However, somatic embryos with two or horn type cotyledon formed an abnormal shoot apex without the tunica-corpus structure or dome shape in the inter-cotyledonary area. These results demonstrated that the variation of cotyledon in somatic embryos was closely related to procambial tissue differentiation and shoot apical formation.

멜론으로부터 체세포배를 얻기 위하여 유식물체의 배축 절편을 1 mg/L 2,4-D와 0.5 mg/L BA가 혼합첨가된 MS배지 치상하여 6주 동안 배양하였다. 배축절편으로부터 연한 노란색의 부드러운 캘러스 형성을 거쳐 형성된 체세포배중에는 2개의 자엽을 갖는 정상적인 형태의 체세포배(26%)와 합생 자엽을 갖는 나팔형의 비 정상적인 체세포배(74%)가 관찰되었다. 정상 체세포배의 하배축 부위에서는 원형의 전형성층 조직이 발달되었고, 자엽 절 부위로 이동되면서 점차 독립적으로 나뉘어져 자엽에서는 완전히 2개의 전형성층 조직으로 분화하였다. 그러나 합생 자엽을 갖는 나팔형의 체세포배에서는 하배축에서 발달된 원형의 전형층조직이 자엽 절과 자엽부위에서도 원형의 전형성층 조직으로 연결되어 있었다. 또한 2개의 자엽을 갖는 정상 및 합생 자엽을 갖는 비 정상 체세포배 tunica-corpus구조를 볼 수 없었으며 전형적인 dome구조도 관찰할 수 없었다. 이러한 결과는 체세포배에서 전형성층 조직의 분화는 자엽형성 및 유경조직 형성과 밀접한 관계가 있는 것으로 추측할 수 있다.

Keywords

References

  1. Ammirato, P.V. 1987. Organizational events during somatic embryogenesis. In Green C.E. (ed.), Plant Tissue and Cell Culture, Alan R Liss, New York, USA. pp. 57-81.
  2. Buchheim, J.A., S.M. Colburn and J.P. Ranch. 1989. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89:768-775. https://doi.org/10.1104/pp.89.3.768
  3. Choi, P.S., W.Y. Soh, D.Y. Cho and J.R. Liu. 2005. Relationship of cotyledon number with procambium differentiation in somatic embryogenesis of Codonopsis lanceolata L. Korean J. Plant Biotechnol. 32:135-138. https://doi.org/10.5010/JPB.2005.32.2.135
  4. Choi, P.S., W.Y. Soh, D.Y. Cho and J.R. Liu. 1994. High frequency somatic embryogenesis and plant regeneration in seedling explants cultures of Melon (Cucumis melo L.). Korean J. Plant Tiss. Cult. 21:1-6.
  5. Dos Santos, A.V.P., E.G. Cutter and M.R. Davey. 1983. Origin and development of somatic embryos in Medicago sativa L. (Alfalfa). Protoplasma 117:107-115. https://doi.org/10.1007/BF01288349
  6. Gray, D.J., D.W. McColley and M.E. Compton. 1993. High frequency somatic embryogenesis from quiescent seed cotyledon of Cucumis melo L., Cultivars. J. American Soc. Hort. Sci. 118:425-432.
  7. Gray, D.J. and J.A. Mortensen. 1987. Initiation and maintenance of long term somatic embryogenesis from anther and ovaries of Vitis longii "Microsperma". Plant Cell Tiss. Org. Cult . 9:73-80. https://doi.org/10.1007/BF00046081
  8. Jelaska, S. 1974. Embryogenesis and organogenesis in pumpkin explants. Physiol. Plant. 31:257-261. https://doi.org/10.1111/j.1399-3054.1974.tb03701.x
  9. Kageyama, K., T. Komatsuda and K. Nakajima. 1990. Effects of sucrose concentration on morphology of somatic embryos from immature soybean cotyledons. Plant Tiss. Cult. Lett. 7:108-110. https://doi.org/10.5511/plantbiotechnology1984.7.108
  10. Lee, K.S. and W.Y. Soh. 1993. Somatic embryogenesis and structural aberrancy of embryos in tissue cultures of Aralia cordata Thumb. Korean J. Plant Tiss. Cult. 20:77-84.
  11. Liu, C.M., Z.H. Xu and N.H. Chua. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621-630. https://doi.org/10.1105/tpc.5.6.621
  12. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  13. Orezyk, W. and S. Malepszy. 1985. In vitro culture of Cucumis sativus L. stabilizing effect of glycine on leaf protoplasts. Plant Cell Rep. 4:269-273. https://doi.org/10.1007/BF00269375
  14. Raghavan, V. 2004. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Amer. J. Bot. 91:1743-1756. https://doi.org/10.3732/ajb.91.11.1743
  15. Soh, W.Y., P.S. Choi, D.Y. Cho and J.R. Liu. 2001. Plant regeneration from somatic embryos with anomalous cotyledons formed in cell cultures of Codonopsis lanceolata. Phytomorphology Golden Jubilee Issue 327-336.
  16. Tabei, Y., T. Kanno and T. Nishio. 1991. Regulation of organogenesis and somatic embryogenesis by auxin in melon (Cucumis melo L.). Plant Cell Rep. 10:225-229.
  17. Ziv, M. and G. Gadasi. 1986. Enhanced embryogenesis and plant regeneration from cucumber (Cucumis sativus L.) callus by activated charcoal in solid/liquid double layer cultures. Plant Sci. 47:115-122. https://doi.org/10.1016/0168-9452(86)90058-0

Cited by

  1. 사과의 접합자배 encapsulation에 의한 인공종자 개발 vol.34, pp.1, 2013, https://doi.org/10.7732/kjpr.2021.34.1.059