DOI QR코드

DOI QR Code

Alpha-glucosidase Inhibition Activity of Methanol Extracts Obtained from Nine Pteridophyte Species Native to Korea

자생 양치식물 9종의 성엽 및 근경 추출물의 α-glucosidase 억제 활성

  • Kim, Na Rae (Department of Horticultural Science, Chungbuk National University,) ;
  • Chi, Lai Won (Department of Horticultural Science, Chungbuk National University,) ;
  • Lee, Cheol Hee (Department of Horticultural Science, Chungbuk National University,)
  • Received : 2013.01.22
  • Accepted : 2013.06.14
  • Published : 2013.08.31

Abstract

This study was conducted not only to analyze ${\alpha}$-glucosidase inhibition activity with fronds and rhizomes of nine Pteridophyte species, but also to select the plant materials suitable for natural ${\alpha}$-glucosidase inhibitor. Harvested rhizomes and fronds were washed, freeze-dried and grinded. After conducting ultrasonification extraction for 30 minutes in ultrasonic water tank with 100% methanol solvent, and vacuum filtration, ${\alpha}$-glucosidase inhibition activity was measured. Acarbose was used as the positive control. After mixing $100{\mu}L$ of 0.7 unit ${\alpha}$-glucosidase enzyme solution into $50{\mu}L$ of extract and reacting them at $37^{\circ}C$ for 10 minutes, $50{\mu}L$ of 1.5 mM ${\rho}$-NPG solution was taken and reacted at $37^{\circ}C$ for 20 minutes. The reaction was stopped with 1 mL of 1 M $Na_2CO_3$ and absorbance was measured in 405 nm. With the regression analysis, the content of solubility solids (the value of $IC_{50}$) which can inhibit 50% of 0.7 unit ${\alpha}$-glucosidase solution's activity was investigated. The frond ($IC_{50}=14.00{\sim}913.33{\mu}g{\cdot}mL^{-1}$) and rhizome extracts ($IC_{50}=12.93{\sim}205.84{\mu}g{\cdot}mL^{-1}$) of nine Pteridophyte species showed higher ${\alpha}$-glucosidase inhibition activity in comparison with acarbose ($IC_{50}=1413.70{\mu}g{\cdot}mL^{-1}$). The extracts of fronds and rhizomes showed higher value than acarbose by 1.55~100.98 and 6.87~109.33 times each. Especially, ${\alpha}$-glucosidase inhibition activities of Pyrrosia lingua in fronds and Osmunda cinnamomea var. fokiensis in rhizomes were the highest. The necessary biomass of fronds and rhizomes for inhibiting 50% of ${\alpha}$-glucosidase activity showed the lowest value, 0.35, 0.27 mg each, in O. cinnamomea var. fokiensis. $IC_{50}$ value of P. lingua was the highest among fronds of nine Pteridophyte species, but content of soluble solids was 2.4 times less than O. cinnamomea var. fokiensis. So frond of O. cinnamomea var. fokiensis is more economic in comparison with P. lingua. As the result of this study, O. cinnamomea var. fokiensis showed high ${\alpha}$-glucosidase inhibition activity even with small biomass. Therefore it was considered to be high-valued economic material as natural ${\alpha}$-glucosidase inhibitor.

본 연구는 자생 양치식물 9종의 성엽과 근경을 재료로 ${\alpha}$-glucosidase 억제활성을 분석하여 천연 ${\alpha}$-glucosidase 저해제로서 개발 가능한 식물 소재를 선발하기 위하여 수행하였다. 수확된 성엽과 근경은 수세 후 동결건조 하였으며, 건조시료를 분쇄하여 100% 메탄올 용매로 30분 동안 초음파 추출을 하였고, 추출 후 감압여과 하여 ${\alpha}$-glucosidase 억제활성을 측정하였다. 양성 대조구로는 acarbose를 사용하였다. 추출물 $50{\mu}L$에 0.7 unit ${\alpha}$-glucosidase 효소액 $100{\mu}L$를 넣고 혼합하여 $37^{\circ}C$에서 10분간 반응시킨 후, 1.5 mM ${\rho}$-NPG 기질용액을 $50{\mu}L$ 넣고 $37^{\circ}C$에서 20분간 반응시켰다. 1 M $Na_2CO_3$ 1 mL로 반응을 정지시키고 405 nm에서 흡광도를 측정하였다. 회귀분석을 이용하여 0.7 unit ${\alpha}$-glucosidase 용액의 활성을 50%를 억제하는데 필요한 시료의 농도($IC_{50}$ 값)를 구하였다. 양치식물 9종의 ${\alpha}$-glucosidase 억제활성은 성엽($IC_{50}=14.00{\sim}913.33{\mu}g{\cdot}mL^{-1}$)과 근경 추출물($IC_{50}=12.93{\sim}205.84{\mu}g{\cdot}mL^{-1}$)에서 공히 acarbose($IC_{50}=1413.70{\mu}g{\cdot}mL^{-1}$)에 비해 높았다. 양치식물의 추출물은 acarbose에 비해 성엽은 1.55~100.98배, 근경은 6.87~109.33배 높은 것으로 나타났다. 특히 성엽에서는 석위의 억제활성이, 근경에서는 꿩고비의 ${\alpha}$-glucosidase 억제활성이 가장 높았다. ${\alpha}$-Glucosidase 활성의 50%를 억제하기 위한 성엽과 근경의 필요 생체량은 공히 꿩고비(각 0.35, 0.27 mg)에서 가장 적은 것으로 나타났다. 성엽의 경우는 석위의 $IC_{50}$ 값이 가장 높았으나 가용성 고형분의 함량이 꿩고비에 비해 2.4배 낮아, 오히려 꿩고비의 경제성이 더 높은 것을 알 수 있었다. 본 연구의 결과 꿩고비는 적은 생체량으로도 높은 ${\alpha}$-glucosidase 억제활성을 나타내기 때문에 경제적인 천연 ${\alpha}$-glucosidase 저해제 소재로써 개발 가치가 매우 높은 것을 알 수 있었다.

Keywords

References

  1. Adisakwattana, S., P. Chantarasinlapin, H. Thammarat and S. Yibchok-Anun. 2009. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alphaglucosidase. J. Enz. Inhib. Med. Chem. 24:1194-1200. https://doi.org/10.1080/14756360902779326
  2. Ahn, D.K. 1998. Illustrated Book of Korean Medical Herbs. Gyohaksa, Seoul, Korea (in Korean).
  3. Bae, K.H. 2000. Medicinal Plants in Korea. Gyohaksa, Seoul, Korea (in Korean).
  4. Baynes, J.W. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40:405-412. https://doi.org/10.2337/diab.40.4.405
  5. Bertozzi, C.R. and L.L. Kiessling. 2001. Chemical glycobiology. Science 23:2357-2364.
  6. Croft, J. 1982. Ferns and man in New Guinea. Papua New Guinea Botany Soc. (http://www.cpbr.gov.au/fern/fernsman-ng.html.).
  7. Drent, M.L., A.T. Tollefsen, F.H. Van Heusden, E.B. Hoenderdos, J.J. Jonker and E.A. Van der Veen. 2002. Dosedependent efficacy of miglitol, an alpha-glucosidase inhibitor, in type 2 diabetic patients on diet alone: Results of a 24-week double-blind placebo-controlled study. Diab. Nutr. Metab. 15:152-159.
  8. Goke, B., H. Fuder, G. Wieckhorst, U. Theiss, E. Stridde, T. Littke, P. Kleist, R. Arnold and P.W. Lucker. 1995. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 56: 493-501. https://doi.org/10.1159/000201282
  9. Han, Q.B., S.L. Li, C.F. Qiao, J.Z. Song, Z.W. Cai, P.H. But P, P.C. Shaw and H.X. Xc. 2008. A simple method to identify the unprocessed Strychnos seeds used in herbal medicinal products. Planta Med. 74:458-463. https://doi.org/10.1055/s-2008-1034359
  10. Jeong, J.A., S.H. Kwon, and C.H. Lee. 2007. Screening for antioxidative activities of extracts from aerial and underground parts of some edible and medicinal ferns. Kor. J. Plant Res. 20:185-192 (in Korean).
  11. Kim, H.J. and Y.C. Kim. 2006. Antidiabetic and antioxidant effects of Chunggugjang powder in streptozotocin-induced diabetic rats. J. Environ. Toxicol. 21:139-146 (in Korean).
  12. Kim, M.B., S.H. Hyun, J.S. Park, M.A. Kang, Y.H. Ko and S.B. Lim. 2008. Integral antioxidative capacity of extracts by pressurized organic solvent from natural plants in Jeju. J Kor. Soc. Food Sci. Nutr. 37:1491-1496 (in Korean). https://doi.org/10.3746/jkfn.2008.37.11.1491
  13. Korean Fern Society (KFS). 2005. Illustrated Fern Native to Korea. Geobook, Seoul, Korea (in Korean).
  14. Lee, J.M., J.H. Park, H.R. Park and E.J. Park. 2010. Antioxidant and alpha-glucosidase inhibitory activity of Strychnos nuxvomica extracts. J. Kor. Soc. Food Sci. Nutr. 39: 1243-1248 (in Korean). https://doi.org/10.3746/jkfn.2010.39.9.1243
  15. Nam, K.H. and Y.M. Lee. 2005. Edible ferns of Korea. J. Kor. Ferns Soc. 9:23-30 (in Korean).
  16. Oh, S.J., S.S. Hong, Y.H. Kim and S.C. Koh. 2008. Screening of biological activities in fern plants native to Jeju island. Kor. J. Plant Res. 21:12-18 (in Korean).
  17. Pak, M.K. 1961. Flora of Korean Pteridophyta. Kyohakdoso Co., Seoul, Korea (in Korean).
  18. Shin, S.L. 2010. Functional components and biological activities of Pteridophytes as healthy biomaterials. Ph.D Thesis, Chungbuk Nat'l. Univ. (in Korean).
  19. Taylor, W.C. 1994. Our fine, feathery ferns. LORE Mag. 44:14-19.
  20. Vannasaeng, S., S. Ploybutr, W. Nitiyanant, T. Peerapatdit and A. Vichayanrat. 1995. Effects of alpha-glucosidase inhibitor (acarbose) combined with sulfonylurea or sulfonylurea and metformin in treatment of non-insulin-dependent diabetes mellitus. J. Med. Assoc. Thai. 78:578-585.
  21. Xu, M.L., J.H. Hu, L. Wang, H.S. Kim, C.W. Jin and D.H. Cho. 2010. Antioxidant and anti-diabetes activity of extracts from Machilus thunbergii S. et Z. Kor. J. Med. Crop Sci. 18:34-39.

Cited by

  1. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  2. Physicochemical Characteristics and Antioxidant Activity of Bracken (Pteridium aquilinum Kuhn) in Namhae vol.31, pp.3, 2015, https://doi.org/10.9724/kfcs.2015.31.3.288
  3. Spore Germination and Prothallium Development Conditions of Lygodium japonicum (Thunb.) Sw. vol.29, pp.4, 2016, https://doi.org/10.7732/kjpr.2016.29.4.400