DOI QR코드

DOI QR Code

Age-Related $CD4^+CD25^+Foxp3^+$ Regulatory T-Cell Responses During Plasmodium berghei ANKA Infection in Mice Susceptible or Resistant to Cerebral Malaria

  • Shan, Ying (Department of Immunology, College of Basic Medical Sciences, China Medical University) ;
  • Liu, Jun (Department of Immunology, College of Basic Medical Sciences, China Medical University) ;
  • Pan, Yan-Yan (Department of Immunology, College of Basic Medical Sciences, China Medical University) ;
  • Jiang, Yong-Jun (Department of Laboratory Medicine, the First Hospital of China Medical University) ;
  • Shang, Hong (Department of Laboratory Medicine, the First Hospital of China Medical University) ;
  • Cao, Ya-Ming (Department of Immunology, College of Basic Medical Sciences, China Medical University)
  • Received : 2012.11.20
  • Accepted : 2013.02.26
  • Published : 2013.06.30

Abstract

Different functions have been attributed to $CD4^+CD25^+Foxp3^+$ regulatory T-cells (Tregs) during malaria infection. Herein, we describe the disparity in Treg response and pro- and anti-inflammatory cytokines during infection with Plasmodium berghei ANKA between young (3-week-old) and middle-aged (8-month-old) C57BL/6 mice. Young mice were susceptible to cerebral malaria (CM), while the middle-aged mice were resistant to CM and succumbed to hyperparasitemia and severe anemia. The levels of pro-inflammatory cytokines, such as TNF-${\alpha}$, in young CM-susceptible mice were markedly higher than in middle-aged CM-resistant mice. An increased absolute number of Tregs 3-5 days post-inoculation, co-occurring with elevated IL-10 levels, was observed in middle-aged CM-resistant mice but not in young CM-susceptible mice. Our findings suggest that Treg proliferation might be associated with the suppression of excessive pro-inflammatory Th1 response during early malaria infection, leading to resistance to CM in the middle-aged mice, possibly in an IL-10-dependent manner.

Keywords

References

  1. Severe falciparum malaria.World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 2000; 94 (suppl): S1-S90.
  2. Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36: 569-582. https://doi.org/10.1016/j.ijpara.2006.02.016
  3. Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol 2004; 4: 169-180. https://doi.org/10.1038/nri1311
  4. Engwerda C, Belnoue E, Gruner AC, Renia L. Experimental models of cerebral malaria. Curr Top Microbiol Immunol 2005; 297: 103-143.
  5. Ortolano F, Maffia P, Dever G, Hutchison S, Benson R, Millington OR, De Simoni MG, Bushell TJ, Garside P, Carswell HV, Brewer JM. Imaging T-cell movement in the brain during experimental cerebral malaria. Parasite Immunol 2009; 31: 147-150. https://doi.org/10.1111/j.1365-3024.2008.01090.x
  6. Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 1987; 237: 1210-1212. https://doi.org/10.1126/science.3306918
  7. Grau GE, Frei K, Piguet PF, Fontana A, Heremans H, Billiau A, Vassalli P, Lambert PH. Interleukin 6 production in experimental cerebral malaria: Modulation by anticytokine antibodies and possible role in hypergammaglobulinemia. J Exp Med 1990; 172: 1505-1508. https://doi.org/10.1084/jem.172.5.1505
  8. Riley EM, Wahl S, Perkins DJ, Schofield L. Regulating immunity to malaria. Parasite Immunol 2006; 28: 35-49. https://doi.org/10.1111/j.1365-3024.2006.00775.x
  9. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 2005; 22: 329-341. https://doi.org/10.1016/j.immuni.2005.01.016
  10. Schwartz RH. Natural regulatory T cells and self-tolerance. Nat Immunol 2005; 6: 327-330. https://doi.org/10.1038/ni1184
  11. Belkaid Y, Sun CM, Bouladoux N. Parasites and immunoregulatory T cells. Curr Opin Immunol 2006; 18: 406-412. https://doi.org/10.1016/j.coi.2006.05.014
  12. Petersen PE. Global policy for improvement of oral health in the 21st century-implications to oral health research of world health assembly 2007, World Health Organization. Community Dent Oral Epidemiol 2009; 37: 1-8. https://doi.org/10.1111/j.1600-0528.2008.00448.x
  13. Nie CQ, Bernard NJ, Schofield L, Hansen DS. CD4+CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei-specific Th1 responses involved in cerebral malaria pathogenesis. Infect Immun 2007; 75: 2275-2282. https://doi.org/10.1128/IAI.01783-06
  14. Vigario AM, Gorgette O, Dujardin HC, Cruz T, Cazenave PA, Six A, Bandeira A, Pied S. Regulatory CD4+CD25+Foxp3+ T cells expand during experimental Plasmodium infection but do not prevent cerebral malaria. Int J Parasitol 2007; 37: 963-973. https://doi.org/10.1016/j.ijpara.2007.01.004
  15. Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A, McSweeney K, Waters AP, Janse CJ, Good MF, Hill GR, Engwerda CR. A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 2007; 171: 548-559. https://doi.org/10.2353/ajpath.2007.061033
  16. Long TT, Nakazawa S, Onizuka S, Huaman MC, Kanbara H. Influence of CD4+CD25+ T cells on Plasmodium berghei NK65 infection in BALB/c mice. Int J Parasitol 2003; 33: 175-183. https://doi.org/10.1016/S0020-7519(02)00261-8
  17. Hisaeda H, Maekawa Y, Iwakawa D, Okada H, Himeno K, Kishihara K, Tsukumo S, Yasutomo K. Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells. Nat Med 2004; 10: 29-30. https://doi.org/10.1038/nm975
  18. Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, Andersen RF, Bejon P, Thompson F, Dunachie SJ, Edele F, de Souza JB, Sinden RE, Gilbert SC, Riley EM, Hill AV. Upregulation of TGF-$\beta$, Foxp3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 2005; 23: 287-296. https://doi.org/10.1016/j.immuni.2005.08.006
  19. Edathodu J, Ali B, Alrajhi AA. CD4 validation for the World Health Organization classification and clinical staging of HIV/AIDS in a developing country. Int J Infect Dis 2009; 13: 243-246. https://doi.org/10.1016/j.ijid.2007.12.017
  20. Pierrot C, Adam E, Lafitte S, Godin C, Dive D, Capron M, Khalife J. Age-related susceptibility and resistance to Plasmodium berghei in mice and rats. Exp Parasitol 2003; 104: 81-85. https://doi.org/10.1016/S0014-4894(03)00134-6
  21. Zheng W, Wang QH, Liu YJ, Liu J, Feng H, Wu JJ, Cao YM. Distinct host-related dendritic cell responses during the early stage of Plasmodium yoelii infection in susceptible and resistant mice. Parasite Immunol 2010; 32: 324-334. https://doi.org/10.1111/j.1365-3024.2009.01190.x
  22. Chen G, Liu J, Wang QH, Wu Y, Feng H, Zheng W, Guo SY, Li DM, Wang JC, Cao YM. Effects of CD4+CD25+Foxp3+ regulatory T cells on early Plasmodium yoelii 17XL infection in BALB/c mice. Parasitology 2009; 136: 1107-1120. https://doi.org/10.1017/S0031182009990370
  23. Wu JJ, Chen G, Liu J, Wang T, Zheng W, Cao YM. Natural regulatory T cells mediate the development of cerebral malaria by modifying the pro-inflammatory response. Parasitol Int 2010; 59: 232-241. https://doi.org/10.1016/j.parint.2010.02.007
  24. Zheng W, Wang QH, Feng H, Liu J, Meng HR, Cao YM. CD4+ CD25+Foxp3+ regulatory T cells prevent the development of Th1 immune response by inhibition of dendritic cell function during the early stage of Plasmodium yoelii infection in susceptible BALB/c mice. Folia Parasitol (Praha) 2009; 56: 242-250.
  25. Greenberg J, Nadel EM, Coatney GR. The influence of strain, sex and age of mice on infection with Plasmodium berghei. J Infect Dis 1953; 93: 96-100. https://doi.org/10.1093/infdis/93.1.96
  26. Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, Deininger S, Lawrence E, Ngwa-Amambua A, Jayasooriya S, Cheeseman IH, Gomez-Escobar N, Okebe J, Conway DJ, Riley EM. Distinct roles for Foxp3 and Foxp3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 2009; 5: e1000364. https://doi.org/10.1371/journal.ppat.1000364
  27. Edgerton C, Crispin JC, Moratz CM, Bettelli E, Oukka M, Simovic M, Zacharia A, Egan R, Chen J, Dalle Lucca JJ, Juang YT, Tsokos GC. IL-17 producing CD4+ T cells mediate accelerated ischemia/reperfusion-induced injury in autoimmunity-prone mice. Clin Immunol 2009; 130: 313-321. https://doi.org/10.1016/j.clim.2008.09.019
  28. Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S, Joel PK, Singh MP, Nagpal AC, Dash AP, Udhayakumar V, Singh N, Stiles JK. Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in india. Malar J 2008; 7: 83. https://doi.org/10.1186/1475-2875-7-83
  29. Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 1996; 157: 1620-1624.
  30. Amani V, Vigario AM, Belnoue E, Marussig M, Fonseca L, Mazier D, Renia L. Involvement of ifn-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 2000; 30: 1646-1655. https://doi.org/10.1002/1521-4141(200006)30:6<1646::AID-IMMU1646>3.0.CO;2-0
  31. McGuirk P, Mills KH. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol 2002; 23: 450-455. https://doi.org/10.1016/S1471-4906(02)02288-3
  32. Brown H, Turner G, Rogerson S, Tembo M, Mwenechanya J, Molyneux M, Taylor T. Cytokine expression in the brain in human cerebral malaria. J Infect Dis 1999; 180: 1742-1746. https://doi.org/10.1086/315078
  33. Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004; 4: 553-564. https://doi.org/10.1038/nri1394
  34. Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL. Cd4+ cd25+ regulatory t cells control Leishmania major persistence and immunity. Nature 2002; 420: 502-507. https://doi.org/10.1038/nature01152
  35. Brustoski K, Moller U, Kramer M, Hartgers FC, Kremsner PG, Krzych U, Luty AJ. Reduced cord blood immune effector-cell responsiveness mediated by CD4+ cells induced in utero as a consequence of placental Plasmodium falciparum infection. J Infect Dis 2006; 193: 146-154. https://doi.org/10.1086/498578
  36. Kossodo S, Monso C, Juillard P, Velu T, Goldman M, Grau GE. Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology 1997; 91: 536-540. https://doi.org/10.1046/j.1365-2567.1997.00290.x
  37. Day NP, Hien TT, Schollaardt T, Loc PP, Chuong LV, Chau TT, Mai NT, Phu NH, Sinh DX, White NJ, Ho M. The prognostic and pathophysiologic role of pro- and anti-inflammatory cytokines in severe malaria. J Infect Dis 1999; 180: 1288-1297. https://doi.org/10.1086/315016
  38. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  39. Lara C, Fayyad J, de Graaf R, Kessler RC, Aguilar-Gaxiola S, Angermeyer M, Demytteneare K, de Girolamo G, Haro JM, Jin R, Karam EG, Lepine JP, Mora ME, Ormel J, Posada-Villa J, Sampson N. Childhood predictors of adult attention-deficit/hyperactivity disorder: Results from the world health organization world mental health survey initiative. Biol Psychiatry 2009; 65: 46-54. https://doi.org/10.1016/j.biopsych.2008.10.005

Cited by

  1. Antigen Mimicry between Infectious Agents and Self or Environmental Antigens May Lead to Long-Term Regulation of Inflammation vol.4, pp.None, 2013, https://doi.org/10.3389/fimmu.2013.00314
  2. Parasite densities modulate susceptibility of mice to cerebral malaria during co-infection with Schistosoma japonicum and Plasmodium berghei vol.13, pp.None, 2013, https://doi.org/10.1186/1475-2875-13-116
  3. Myeloid expression of the AP‐1 transcription factor JUNB modulates outcomes of type 1 and type 2 parasitic infections vol.37, pp.9, 2015, https://doi.org/10.1111/pim.12215
  4. The role of regulatory T cells during Plasmodium chabaudi chabaudi AS infection in BALB/c mice vol.38, pp.7, 2016, https://doi.org/10.1111/pim.12333
  5. G6pd-Deficient Mice Are Protected From Experimental Cerebral Malaria and Liver Injury by Suppressing Proinflammatory Response in the Early Stage of Plasmodium berghei Infection vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.719189