초록
본 논문에서는GPU 환경에서 기타의 음합성을 위한 물리적 모델링의 효율적인 병렬구현 방법을 제안한다. 물리적 모델링을 이용하여 기타의 개방현(E2, A2, D3, G4, B3, E4)들의 기본음을 합성하기 위해 각 개방현 음 합성을 위한 적절한 필터 계수를 사용하였고, 지연 라인의 길이를 조절하였다. 또한 물리적 모델링 알고리즘을 분석한 결과 지연 라인의 길이만큼 병렬성을 갖는 것을 확인하였다. 따라서 각 개방현의 기타 음을 합성하기 위해 지연 라인의 길이만큼CUDA 코어를 할당한 후 최적의 성능을 보이도록 알고리즘을 병렬 구현하였다. 모의실험결과, GPU를 이용하여 합성한 기타 음과 원음과의 스펙트럼이 매우 유사하였고, GPU는 기존 고성능 TI DSP보다 68배, CPU보다 3배의 성능 향상을 보였다. 또한, 본 논문에서는 물리적 모델링 알고리즘을 멀티 GPU시스템에서도 구현하고 성능을 분석하였다.
This paper proposes an effective parallel implementation of a physical modeling synthesis of guitar on the GPU environment. We used appropriate filter coefficients and adjusted the length of delay line for each open string to generate 44,100 six-polyphonic guitar sounds (E2, A2, D3, G4, B3, E4) by using physical modeling synthesis. In addition, we analyzed the physical modeling synthesis algorithm and observed that we can exploit parallelism inherent in the length of delay line. Thus, we assigned CUDA cores as many as the length of delay line and effectively implemented the physical modeling synthesis using GPU to achieve the highest performance. Experimental results indicated that synthetic guitar sounds using GPU were very similar to the original sounds when we compared their spectra. In addition, GPU achieved 68x and 3x better performance than high-performance TI DSP and CPU, respectively. Furthermore, this paper implemented and evaluated the performance of multi-GPU systems for the physical modeling algorithm.