Psychiatric Implication for the Regulation of AMPA Receptor

AMPA 수용체의 조절이 지니는 정신과적 의의

  • Oh, Daeyoung (Center for Synaptic Brain Dysfunctions, Institute of Basic Science (IBS)) ;
  • Lee, Eunee (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 오대영 (기초과학연구원 시냅스 뇌질환 연구단) ;
  • 이은이 (한국과학기술원 의과학대학원)
  • Received : 2013.01.30
  • Accepted : 2013.02.12
  • Published : 2013.02.28

Abstract

Glutamate receptors are important components of synaptic transmission in the nervous system. Especially, ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate most abundant excitatory synaptic transmission in the brain. There is elaborate mechanism of regulation of AMPA receptors including protein synthesis/degradation, intracellular trafficking, exocytosis/endocytosis and protein modification. In recent studies, it is revealed that functional dysregulation of AMPA receptors are related to major psychiatric disorders. In this review, we describe the structure and function of AMPA receptors in the synapse. We will introduce three steps of mechanism involving trafficking of AMPA receptors to neuronal membrane, lateral diffusion into synapses and synaptic retention by membrane proteins and postsynaptic scaffold proteins. Lastly, we will describe recent studies showing that regulation of AMPA receptors is important pathophysiological mechanism in psychiatric disorders.

Keywords

References

  1. Brose N, O'Connor V, Skehel P. Synaptopathy: dysfunction of synaptic function? Biochem Soc Trans 2010;38:443-444. https://doi.org/10.1042/BST0380443
  2. Arendt T. Synaptic degeneration in Alzheimer's disease. Acta Neuropathol 2009;118:167-179. https://doi.org/10.1007/s00401-009-0536-x
  3. Hall J, Romaniuk L, McIntosh AM, Steele JD, Johnstone EC, Lawrie SM. Associative learning and the genetics of schizophrenia. Trends Neurosci 2009;32:359-365. https://doi.org/10.1016/j.tins.2009.01.011
  4. Betancur C, Sakurai T, Buxbaum JD. The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci 2009;32:402-412. https://doi.org/10.1016/j.tins.2009.04.003
  5. Mayer ML, Westbrook GL. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 1987;28:197- 276. https://doi.org/10.1016/0301-0082(87)90011-6
  6. Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, et al. AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 2008;22:3129-3134. https://doi.org/10.1096/fj.08-106450
  7. Chang EH, Savage MJ, Flood DG, Thomas JM, Levy RB, Mahadomrongkul V, et al. AMPA receptor downscaling at the onset of Alzheimer's disease pathology in double knockin mice. Proc Natl Acad Sci U S A 2006;103:3410-3415. https://doi.org/10.1073/pnas.0507313103
  8. Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology 2009;56:2-5. https://doi.org/10.1016/j.neuropharm.2008.06.063
  9. Bredt DS, Nicoll RA. AMPA receptor trafficking at excitatory synapses. Neuron 2003;40:361-379. https://doi.org/10.1016/S0896-6273(03)00640-8
  10. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44:5-21. https://doi.org/10.1016/j.neuron.2004.09.012
  11. Huettner JE. Kainate receptors and synaptic transmission. Prog Neurobiol 2003;70:387-407. https://doi.org/10.1016/S0301-0082(03)00122-9
  12. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994;17:31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  13. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 2000;287: 2262-2267. https://doi.org/10.1126/science.287.5461.2262
  14. Passafaro M, Piëch V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat Neurosci 2001;4:917-926. https://doi.org/10.1038/nn0901-917
  15. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 2000;23: 649-711. https://doi.org/10.1146/annurev.neuro.23.1.649
  16. Shepherd JD, Huganir RL. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 2007;23:613-643. https://doi.org/10.1146/annurev.cellbio.23.090506.123516
  17. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci 2004;5:771-781. https://doi.org/10.1038/nrn1517
  18. Newpher TM, Ehlers MD. Glutamate receptor dynamics in dendritic microdomains. Neuron 2008;58:472-497 https://doi.org/10.1016/j.neuron.2008.04.030
  19. Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, et al. PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 2011;31:6329-6338. https://doi.org/10.1523/JNEUROSCI.5968-10.2011
  20. Opazo P, Choquet D. A three-step model for the synaptic recruitment of AMPA receptors. Mol Cell Neurosci 2011;46:1-8. https://doi.org/10.1016/j.mcn.2010.08.014
  21. Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc Natl Acad Sci U S A 2002;99: 13902-13907. https://doi.org/10.1073/pnas.172511199
  22. Man HY, Sekine-Aizawa Y, Huganir RL. Regulation of {alpha}-amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc Natl Acad Sci U S A 2007;104:3579-3584. https://doi.org/10.1073/pnas.0611698104
  23. Makino H, Malinow R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 2009;64:381-390. https://doi.org/10.1016/j.neuron.2009.08.035
  24. Lisman J, Raghavachari S. A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 2006; 2006:re11.
  25. Borgdorff AJ, Choquet D. Regulation of AMPA receptor lateral movements. Nature 2002;417:649-653. https://doi.org/10.1038/nature00780
  26. Ashby MC, Maier SR, Nishimune A, Henley JM. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J Neurosci 2006;26:7046-7055 https://doi.org/10.1523/JNEUROSCI.1235-06.2006
  27. Bats C, Groc L, Choquet D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 2007; 53:719-734. https://doi.org/10.1016/j.neuron.2007.01.030
  28. Tardin C, Cognet L, Bats C, Lounis B, Choquet D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 2003;22:4656-4665. https://doi.org/10.1093/emboj/cdg463
  29. Xia J, Zhang X, Staudinger J, Huganir RL. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 1999;22:179-187. https://doi.org/10.1016/S0896-6273(00)80689-3
  30. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A 2004;101:13915-13920. https://doi.org/10.1073/pnas.0405939101
  31. El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS. PSD-95 involvement in maturation of excitatory synapses. Science 2000;290:1364-1368.
  32. Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experiencedriven synaptic plasticity. J Neurosci 2004;24:916-927. https://doi.org/10.1523/JNEUROSCI.4733-03.2004
  33. Elias GM, Funke L, Stein V, Grant SG, Bredt DS, Nicoll RA. Synapsespecific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins. Neuron 2006;52: 307-320. https://doi.org/10.1016/j.neuron.2006.09.012
  34. Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 2000;408:936-943. https://doi.org/10.1038/35050030
  35. Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 2009;323:1313-1319. https://doi.org/10.1126/science.1167852
  36. von Engelhardt J, Mack V, Sprengel R, Kavenstock N, Li KW, Stern- Bach Y, et al. CKAMP44: a brain-specific protein attenuating shortterm synaptic plasticity in the dentate gyrus. Science 2010;327:1518- 1522. https://doi.org/10.1126/science.1184178
  37. Kalashnikova E, Lorca RA, Kaur I, Barisone GA, Li B, Ishimaru T, et al. SynDIG1: an activity-regulated, AMPA- receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 2010;65:80-93. https://doi.org/10.1016/j.neuron.2009.12.021
  38. Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, et al. TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 2005;8:1525-1533. https://doi.org/10.1038/nn1551
  39. Silverman JB, Restituito S, Lu W, Lee-Edwards L, Khatri L, Ziff EB. Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. J Neurosci 2007;27:8505-8516. https://doi.org/10.1523/JNEUROSCI.1395-07.2007
  40. Tai CY, Kim SA, Schuman EM. Cadherins and synaptic plasticity. Curr Opin Cell Biol 2008;20:567-575. https://doi.org/10.1016/j.ceb.2008.06.003
  41. Heine M, Thoumine O, Mondin M, Tessier B, Giannone G, Choquet D. Activity-independent and subunit-specific recruitment of functional AMPA receptors at neurexin/neuroligin contacts. Proc Natl Acad Sci U S A 2008;105:20947-20952. https://doi.org/10.1073/pnas.0804007106
  42. Selkoe DJ, Schenk D. Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003;43:545-584. https://doi.org/10.1146/annurev.pharmtox.43.100901.140248
  43. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 2006;52:831-843. https://doi.org/10.1016/j.neuron.2006.10.035
  44. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008;14:837-842. https://doi.org/10.1038/nm1782
  45. Gu Z, Liu W, Yan Z. {beta}-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J Biol Chem 2009;284:10639- 10649. https://doi.org/10.1074/jbc.M806508200
  46. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005;8:1051-1058. https://doi.org/10.1038/nn1503
  47. Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 2012;73:962-977. https://doi.org/10.1016/j.neuron.2011.12.033
  48. Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology 2010;35:2110-2119. https://doi.org/10.1038/npp.2010.87
  49. Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse 2006;60:585-598. https://doi.org/10.1002/syn.20329
  50. Jin R, Clark S, Weeks AM, Dudman JT, Gouaux E, Partin KM. Mechanism of positive allosteric modulators acting on AMPA receptors. J Neurosci 2005;25:9027-9036. https://doi.org/10.1523/JNEUROSCI.2567-05.2005
  51. Ingvar M, Ambros-Ingerson J, Davis M, Granger R, Kessler M, Rogers GA, et al. Enhancement by an ampakine of memory encoding in humans. Exp Neurol 1997;146:553-559. https://doi.org/10.1006/exnr.1997.6581
  52. O'Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES. AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 2004;3:181-194. https://doi.org/10.2174/1568007043337508