ICT-based On-going Building Energy Performance Evaluation Technologies

ICT 기반 지속가능한 건물에너지 성능평가 기술

  • Published : 2013.03.15

Abstract

Keywords

References

  1. A. Beyene, H. Guven, Z. Jawdat, and P. Lowrey, "Conventional chiller performances simulation and field data", International Journal of Energy Research, Vol. 18, No. 3, pp. 391-399, 1994. https://doi.org/10.1002/er.4440180305
  2. M. Browne and P. Bansal, "Modelling of in-situ liquid chillers", in International Refrigeration Conference, July 2000, pp. 425-432.
  3. J. Gordon, K. C. Ng, and H. T. Chua, "Centrifugal chillers: Thermodynamic modelling and a diagnostic case study", International Journal of Refrigeration, Vol. 18, No. 4, pp. 253-257, 1995. https://doi.org/10.1016/0140-7007(95)96863-2
  4. P. Haves, T. Salsbury, D. Claridge, and M. Liu, "Use of whole buidling simulation in on-line performance assessment: modeling and implementation issues", in Proceeindgs of International IBPSA Conference Building Simulation 2001, 2001.
  5. K. Srinivas, "Methods for fault detection, diagnostics, and prognostics for building systems - a reivew, part i", HVAC&R Research, Vol. 11, No. 1, pp. 3-25, 2005. https://doi.org/10.1080/10789669.2005.10391123
  6. D. Jacob, S. Dietz, S. Komhard, C. Neumann, and S. Herkel, "Black-box models for fault detection and performance monitoring of buildings", Journal of Building Performance Simulation, Vol. 3, No. 1, pp. 53-62, 2010. https://doi.org/10.1080/19401490903414454
  7. Z. O'Neill, M. Shashanka, Z. Pang, P. Bhattacharya, T. Bailey, and P. Haves, "Real time model-based energy diagnostics in buildings", in Proceeindgs of Building Simulation, 2011, pp. 474-482.
  8. J. Cui and S. Wang, "A model-based online fault detection and diagnosis strategy for centrifugal chiller systems", International Journal of Thermal Sciences, Vol. 44, No. 10, pp. 986-999, 2005. https://doi.org/10.1016/j.ijthermalsci.2005.03.004
  9. D. Monfet, "New ongoing commissioning approach of central plants: methodology and case study", Ph.D. dissertation, Concordia Univ., 2011.
  10. C. Atkeson, A. Moore, and S. Schaal, "Locally weighted learning", Artificial Intelligence Review, Vol. 11, pp. 11-73, April 1997. https://doi.org/10.1023/A:1006559212014
  11. S. Schaal, C. G. Atkeson, and S. Vijayakumar, "Scalable techniques from nonparametric statistics for real time robot learning", Appl. Intell., Vol. 17, No. 1, pp. 49-60, 2002. https://doi.org/10.1023/A:1015727715131
  12. D. A. Cohn, Z. Ghahramani, and M. I. Jordan, "Active learning with statistical models", Journal of Artificial Intelligence Research, Vol. 4, pp. 129-145, 1996.
  13. Y. Shin, Y. Kim, G.-W. Moon, and S.-W. Choi, "In-situ diagnosis of vapor-compressed chiller performance for energy saving", Journal of Mechanical Science and Technology, Vol. 19, No. 8, pp. 1670-1681, 2005. https://doi.org/10.1007/BF03023943
  14. H. Yoon and J. Jang, "Ongoing Energy Fault Detection Using a Data-driven Chiller Performance Prediction model", International Conference on Computer Convergence Technology, 2012.
  15. 신영기, 장영수, 김영일, "뉴로 퍼지를 이용한 냉동기성능 진단 기법", 대한기계학회논문집, Vol. 27, No. 5, pp. 553-560, 2003.