References
- A. Beyene, H. Guven, Z. Jawdat, and P. Lowrey, "Conventional chiller performances simulation and field data", International Journal of Energy Research, Vol. 18, No. 3, pp. 391-399, 1994. https://doi.org/10.1002/er.4440180305
- M. Browne and P. Bansal, "Modelling of in-situ liquid chillers", in International Refrigeration Conference, July 2000, pp. 425-432.
- J. Gordon, K. C. Ng, and H. T. Chua, "Centrifugal chillers: Thermodynamic modelling and a diagnostic case study", International Journal of Refrigeration, Vol. 18, No. 4, pp. 253-257, 1995. https://doi.org/10.1016/0140-7007(95)96863-2
- P. Haves, T. Salsbury, D. Claridge, and M. Liu, "Use of whole buidling simulation in on-line performance assessment: modeling and implementation issues", in Proceeindgs of International IBPSA Conference Building Simulation 2001, 2001.
- K. Srinivas, "Methods for fault detection, diagnostics, and prognostics for building systems - a reivew, part i", HVAC&R Research, Vol. 11, No. 1, pp. 3-25, 2005. https://doi.org/10.1080/10789669.2005.10391123
- D. Jacob, S. Dietz, S. Komhard, C. Neumann, and S. Herkel, "Black-box models for fault detection and performance monitoring of buildings", Journal of Building Performance Simulation, Vol. 3, No. 1, pp. 53-62, 2010. https://doi.org/10.1080/19401490903414454
- Z. O'Neill, M. Shashanka, Z. Pang, P. Bhattacharya, T. Bailey, and P. Haves, "Real time model-based energy diagnostics in buildings", in Proceeindgs of Building Simulation, 2011, pp. 474-482.
- J. Cui and S. Wang, "A model-based online fault detection and diagnosis strategy for centrifugal chiller systems", International Journal of Thermal Sciences, Vol. 44, No. 10, pp. 986-999, 2005. https://doi.org/10.1016/j.ijthermalsci.2005.03.004
- D. Monfet, "New ongoing commissioning approach of central plants: methodology and case study", Ph.D. dissertation, Concordia Univ., 2011.
- C. Atkeson, A. Moore, and S. Schaal, "Locally weighted learning", Artificial Intelligence Review, Vol. 11, pp. 11-73, April 1997. https://doi.org/10.1023/A:1006559212014
- S. Schaal, C. G. Atkeson, and S. Vijayakumar, "Scalable techniques from nonparametric statistics for real time robot learning", Appl. Intell., Vol. 17, No. 1, pp. 49-60, 2002. https://doi.org/10.1023/A:1015727715131
- D. A. Cohn, Z. Ghahramani, and M. I. Jordan, "Active learning with statistical models", Journal of Artificial Intelligence Research, Vol. 4, pp. 129-145, 1996.
- Y. Shin, Y. Kim, G.-W. Moon, and S.-W. Choi, "In-situ diagnosis of vapor-compressed chiller performance for energy saving", Journal of Mechanical Science and Technology, Vol. 19, No. 8, pp. 1670-1681, 2005. https://doi.org/10.1007/BF03023943
- H. Yoon and J. Jang, "Ongoing Energy Fault Detection Using a Data-driven Chiller Performance Prediction model", International Conference on Computer Convergence Technology, 2012.
- 신영기, 장영수, 김영일, "뉴로 퍼지를 이용한 냉동기성능 진단 기법", 대한기계학회논문집, Vol. 27, No. 5, pp. 553-560, 2003.