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Abstract. In this paper, we consider the row rank inequalities derived from comparisons

of the row ranks of the additions and multiplications of nonnegative integer matrices and

construct the sets of nonnegative integer matrix pairs which is occurred at the extreme

cases for the row rank inequalities. We characterize the linear operators that preserve

these extreme sets of nonnegative integer matrix pairs

1. Introduction

The linear preserver problems are one of the most active research subjects in
matrix theory during last one hundred years, which concern the characterizations
of linear operators on matrix spaces that leave certain functions, subsets, relations,
etc., invariant. For survey of these types of problems, we refer to papers in [6]. The
specified frame of problems is of interest both for matrices with entries from a field
and for matrices with entries from an arbitrary semiring such as Boolean algebra,
nonnegative integers, and fuzzy semiring. It is necessary to note that there are
several rank functions over a semiring that are analogues of the classical function
of the matrix rank over a field. Detailed research and self-contained information
about rank functions over semirings can be found in [1] and [5].

There are some results on the inequalities for the rank function of matrices( see
[1] - [4]). Beasley and Guterman ([1]) investigated the rank inequalities of matrices
over semirings. And they characterized the equality cases for some rank inequalities
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in [3].

In this paper, we construct the sets of nonnegative integer matrix pairs. These
sets are naturally occurred at the extreme cases for the row rank inequalities de-
rived from the addition and multiplication of nonnegative integer matrix pairs. We
characterize the linear operators that preserve these extreme sets of nonnegative
integer matrix pairs.

A semiring S consists of a set S and two binary operations, addition and mul-
tiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);

• S is an Abelian monoid under multiplication (identity denoted by 1);

• multiplication is distributive over addition;

• s0 = 0s = 0 for all s ∈ S.

Let Z+ be the set of nonnegative integers. Then Z+ becomes a semiring under
the usual addition and multiplication. In this thesis we will study the matrices over
the semiring Z+.

A semiring is called antinegative if the zero element is the only element with an
additive inverse.

It is straightforward to see that the nonnegative integer semiring Z+ is antineg-
ative.

Let Mm,n(S) denote the set of m × n matrices with entries from a semiring S.
If m = n, we use the notation Mn(S) instead of Mn,n(S).

A vector space is usually only defined over fields or division rings, and modules
are generalizations of vector spaces defined over rings. We generalize the concept
of vector spaces to semiring vector spaces defined over arbitrary semirings.

If V is a nonempty subset of Mm,1(S) ≡ Sm that is closed under addition and
multiplication by scalars, then V is called a semiring vector space over S. The
notions of subspace and of spanning sets are the same as if S were a field.

A subset W of a vector space V is linearly dependent if there exists x ∈ W such
that x is a linear combination of elements in W \ {x}. Otherwise W is linearly
independent. Thus an independent set cannot contain a zero vector. As with fields,
a basis for a semiring vector space V is a spanning subset of least cardinality. That
cardinality is the dimension, dim(V ), of V .

The following rank functions are usual in the semiring context.
The matrix A ∈ Mm,n(S) is said to be of factor rank k (rank(A) = k) if there

exist matrices B ∈ Mm,k(S) and C ∈ Mk,n(S) such that A = BC and k is the
smallest positive integer for which such factorization exists. By definition, the only
matrix with factor rank 0 is the zero matrix, O.

The row space of a matrix A ∈ Mm,n(S) is the semiring vector space that is
spanned by its rows. The row rank, r(A), of A ∈ Mm,n(Z

+) is the dimension of its
row space. Similarly the column rank, c(A), of A ∈ Mm,n(Z

+) is the dimension of
its column space.
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The matrix A ∈ Mm,n(S) is said to be of term rank k (t(A) = k) if the least
number of lines needed to include all nonzero elements of A is equal to k.

The row(column, factor, term) rank of a zero matrix is zero.

Example 1.1. It follows that

1 ≤ rank(A) ≤ r(A) ≤ n

for all nonzero matrix A ∈ Mm,n(Z
+). These inequalities may be strict: let

A =

[
3 3
4 4

]
=

[
3
4

]
×
[
1 1

]
∈ M2,2(Z

+).

Then rank(A) = 1 < 2 = r(A) over Z+.

A line of a matrix A is a row or a column of the matrix A.
If S is a subsemiring of a field then there is a usual rank function ρ(A) for

any matrix A ∈ Mm,n(S). Easy examples show that over semirings these functions
are not equal in general. However, the inequalities r(A) ≥ ρ(A) and c(A) ≥ ρ(A)
always hold.

It is well-known that the behavior of the function ρ with respect to matrix
addition and multiplication is given by the following inequalities([3]):

• the rank-sum inequalities:

|ρ(A)− ρ(B)| ≤ ρ(A+ B) ≤ ρ(A) + ρ(B),

• Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min {ρ(A), ρ(B)}.

where A, B are conformal matrices with entries from a field.

Arithmetic properties of row rank (or column rank, factor rank) depend on the
structure of semiring of entries. It is restricted by the following list of inequalities
established in [1]:

For 0 ̸= A,B ∈ Mm,n(Z
+),

1. 1 ≤ r(A+B);

2. r(A+B) ≤ m;

3. r(A+B) ≥ |ρ(A)− ρ(B)|.
And for A,B ∈ Mm(Z+) one has that

4. r(AB) ≤ r(A);

5. if ρ(A) + ρ(B) > m then r(AB) ≥ ρ(A) + ρ(B)−m.
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As it was proved in [1] the above inequalities 1 ∼ 5 are sharp and the best
possible. The natural question is to characterize the equality cases in the above
inequalities. Even over fields this is an open problem, see [2, 3, 4] for more details.
The structure of matrix varieties which arise as extremal cases in these inequalities
is far from being understood over fields, as well as over semirings. A usual way to
generate elements of such a variety is to find a tuple of matrices which belongs to
it and to act on this tuple by various linear operators that preserve this variety.
The investigation of the corresponding problems over semirings for the factor rank
function, term and zero term rank functions was done in [2, 3]. This paper is a con-
tinuation of [2, 3, 4] and is devoted to study linear operators that preserve extremal
cases of row rank inequalities. The complete classification of linear operators that
preserve cases of equalities in various matrix inequalities over fields was obtained
in [2, 3, 4]. For the details on linear operators preserving matrix invariants one can
see [6] and references therein.

2. Preliminaries

An operator T : Mm,n(Z
+) → Mm,n(Z

+) is called linear if T (αX) = αT (X)
and T (X + Y ) = T (X) + T (Y ) for all X,Y ∈ Mm,n(Z

+), α ∈ S.
We say that an operator T : Mm,n(Z

+) → Mm,n(Z
+) preserves a set P if X ∈ P

implies that T (X) ∈ P, or, if P is a set of ordered pairs [triples], that (X,Y ) ∈ P

[(X,Y, Z) ∈ P] implies (T (X), T (Y )) ∈ P [(T (X), T (Y ), T (Z)) ∈ P].
The matrix X ◦ Y denotes the Hadamard or Schur product , i.e., the (i, j) entry

of X ◦ Y is xi,jyi,j .
An operator T : Mm,n(Z

+) → Mm,n(Z
+) is called a (P,Q,B)-operator if there

exist permutation matrices P ∈ Mm(Z+) and Q ∈ Mn(Z
+), and a matrix B =

[bi,j ] ∈ Mm,n(Z
+), bi,j are nonzero elements from Z+ for all i, j, 1 ≤ i ≤ m,

1 ≤ j ≤ n, such that T (X) = P (X ◦ B)Q for all X ∈ Mm,n(Z
+) or when m = n

T (X) = P (X ◦B)tQ for all X ∈ Mn(Z
+) where Xt denotes the transpose of X. An

operator T is called a nontransposing (P,Q,B)-operator if there exist permutation
matrices P ∈ Mn(Z

+) and Q ∈ Mn(Z
+), and a matrix B = [bi,j ] ∈ Mm,n(Z

+),
bi,j are nonzero elements from Z+ for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that
T (X) = P (X ◦ B)Q for all X ∈ Mm,n(Z

+). For the case of B = J , (P,Q,B)-
operator is called (P,Q)-operator.

We say that the matrix A dominates the matrix B if and only if bi,j ̸= 0 implies
that ai,j ̸= 0, and we write A ≥ B or B ≤ A in this case.

If A and B are matrices and A ≥ B we let A\B denote the matrix C where

ci,j =

{
0 if bi,j ̸= 0

ai,j otherwise
.

The matrix In is the n×n identity matrix, Jm,n is the m×n matrix of all ones,
Om,n is the m × n zero matrix. We omit the subscripts when the order is obvious
from the context and we write I, J , and O, respectively. The matrix Ei,j , called
a cell, denotes the matrix with 1 in (i, j) position and zero elsewhere. A weighted
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cell is any nonzero scalar multiple of a cell, i.e., αEi,j is a weighted cell for any
0 ̸= α ∈ Z+. Let Ri denote the matrix whose ith row is all ones and all other
rows are zero, and Cj denote the matrix whose jth column is all ones and all other
columns are zero. We let |A| denote the number of nonzero entries in the matrix
A. We denote by A[i1, . . . , ik|j1, . . . , jl] the k × l-submatrix of A which lies in the
intersection of the i1, . . . , ik rows and j1, . . . , jl columns.

We obtain some basic results on the linear operators on Mm,n(Z
+) for later use.

Theorem 2.1. Let T : Mm,n(Z
+) → Mm,n(Z

+) be a linear operator. Then the
following are equivalent:

(1) T is bijective;

(2) T is surjective;

(3) There exists a permutation σ on {(i, j) | i = 1, 2, . . . ,m; j = 1, 2, . . . , n}
such that T (Ei,j) = Eσ(i,j).

Proof. It is trivial that (1) implies (2) and (3) implies (1).

We now show that (2) implies (3).

We assume that T is surjective. Then, for any pair (i, j), there exists some X
such that T (X) = Ei,j . Clearly X ̸= O by the linearity of T . Thus there is a pair
of indices (r, s) such that X = xr,sEr,s + X ′ where (r, s) entry of X ′ is zero and
the following two conditions are satisfied: xr,s ̸= 0 and T (Er,s) ̸= O. Indeed, if in
the contrary for all pairs (r, s) either xr,s = 0 or T (Er,s) = O then T (X) = 0 which
contradicts with the assumption T (X) = Ei,j . Since Z+ is antinegative without
zero divisors it follows that

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j .

Hence, xr,sT (Er,s) = T (xr,sEr,s) ≤ Ei,j and T (Er,s) ̸= O by the above. Therefore,
T (Er,s) ≤ Ei,j . Indeed, if on the contrary, T (Er,s) is a sum of certain multiples of
cells then so is xr,sT (Er,s), since Z+ is antinegative and without zero divisors.

Let Ξi,j = {Er,s | T (Er,s) ≤ Ei,j}. By the above Ξi,j ̸= ∅ for all (i, j). By
its definition Ξi,j ∩ Ξu,v = ∅ whenever (i, j) ̸= (u, v). That is {Ξi,j} is a set of
mn nonempty cells which partition the set of cells. By the pigeonhole principle, we
must have that | Ξi,j |= 1 for all (i, j). Necessarily, for each pair (r, s) there is a
unique pair (i, j) such that T (Er,s) = br,sEi,j . That is there is some permutation σ
on {(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n} such that for some scalars bi,j , T (Ei,j) =
bi,jEσ(i,j). We now only need to show that the bi,j = 1. Since T is surjective and
T (Er,s) ̸≤ Eσ(i,j) for (r, s) ̸= (i, j), there is some α such that T (αEi,j) = Eσ(i,j).
But then, since T is linear, Eσ(i,j) = T (αEi,j) = αT (Ei,j) = αbi,jEσ(i,j). That is,
αbi,j = 1, or bi,j = 1 in Z+. 2

Lemma 2.2. Let T : Mm,n(Z
+) → Mm,n(Z

+) be an operator which maps lines
to lines and is defined by T (Ei,j) = Eσ(i,j), where σ is a permutation on the set
{(i, j) | i = 1, 2, . . . ,m; j = 1, 2, . . . , n}. Then T is a (P,Q)-operator.
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Proof. Since no combination of a rows and b columns can dominate J where a+b =
m unless b = 0 (or if m = n, if a = 0) we have that either the image of each row is a
row and the image of each column is a column, or m = n and the image of each row
is a column and the image of each column is a row. Thus, there are permutation
matrices P and Q such that T (Ri) ≤ PRiQ and T (Cj) ≤ PCjQ or, if m = n,
T (Ri) ≤ P (Ri)

tQ and T (Cj) ≤ P (Cj)
tQ. Since each cell lies in the intersection

of a row and a column and T maps nonzero cells to nonzero cells, it follows that
T (Ei,j) = PEi,jQ, or, if m = n, T (Ei,j) = PEj,iQ = P (Ei,j)

tQ. 2

Remark 2.3. One can easily check that if m = 1 or n = 1 then all operators
under consideration are (P,Q)-operators, if m = n = 1 then all operators under
consideration are (P, P t)-operators.

Henceforth we will always assume that m,n ≥ 2.

Now let us construct the set of matrix pairs that arise as extremal cases in the
inequalities 1 ∼ 5 in section 1 on matrices over Z+:

RAm(Z+) = {(X,Y ) ∈ Mm,n(Z
+)2 | r(X + Y ) = m};

RA1(Z
+) = {(X,Y ) ∈ Mm,n(Z

+)2 | r(X + Y ) = 1};

RAρ(Z
+) = {(X,Y ) ∈ Mm,n(Z

+)2 | r(X + Y ) = |ρ(X)− ρ(Y )|};

RMl(Z
+) = {(X,Y ) ∈ Mm(Z+)2 | r(XY ) = r(X)};

RMρ(Z
+) = {(X,Y ) ∈ Mm(Z+)2 | r(XY ) = ρ(X) + ρ(Y )−m}.

3. Linear operators preserving extreme set of integer matrix pairs

In this section, we obtain the characterizations of the linear operators that preserve
the extreme sets R∗∗(Z

+) defined in section 2.

3.1. Linear operators that preserve RAm(Z+)

Lemma 3.1. If T : Mm,n(Z
+) → Mm,n(Z

+) is a surjective linear operator which
preserves RAm(Z+), then T maps lines to lines.

Proof. Suppose that T−1 does not map lines to lines. Then, there are two non
collinear cells which are mapped to a line. There are two cases, they are mapped
to two cells in a row or two cells in a column by Theorem 2.1.

If two non-collinear cells are mapped to two cells in a row, we may assume
without loss of generality that T (E1,1 +E2,2) = E1,1 +E1,2. If m ≤ n it suffices to
consider A = E1,1 + E2,2 + . . . + Em,m. In this case, T (A) has row rank at most
m− 1, i.e., (0, A) ∈ RAm(Z+), (0, T (A)) /∈ RAm(Z+), a contradiction.
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Let us consider the case n < m. Then we choose a matrix A′ ∈ Mm−2,n−2(Z
+)

such that

A′ =


m 0 · · · 0

m+ 1 0 · · · 0
· · · · · ·
2m− 3 0 · · · 0

 ∈ Mm−2,n−2(Z
+).

Then r(A′) = m− 2. Let A = O2 ⊕ A′ ∈ Mm,n(Z
+). Thus r(A) = r(A′) = m− 2.

Hence (E1,1 + E2,2, A) ∈ RAm(Z+). Since T preserves RAm(Z+), it follows that
(E1,1 + E1,2, T (A)) ∈ RAm(Z+), i.e., r(E1,1 + E1,2 + T (A)) = m. Therefore
r(T (A)[3, . . . ,m; 1, . . . , n]) ≥ m − 2. Since the row rank of any matrix can-
not exceed the number of rows, r(T (A)[3, . . . ,m; 1, . . . , n]) = m − 2. Further,
|T (A)[3, . . . ,m; 1, . . . , n]| < |A| = |A′| = m− 2 since T transforms weighted cells to
weighted cells and at least one cell has to be mapped into the 2nd row. Thus we can
have an (m− 2)× n submatrix of E1,1 +E1,2 + T (A) whose row rank is m− 2 and
the number of whose nonzero entries are less than m− 2. This is a contradiction.

If two non-collinear cells are mapped to two cells in a column, we may assume
without loss of generality that T (E1,1 + E2,2) = E1,1 + E2,1. In this case, by
considering the matrices E1,1 + E2,2 and A chosen above, the result follows.

Thus, T maps lines to lines. 2

Theorem 3.2. Let T : Mm,n(Z
+) → Mm,n(Z

+) be a surjective linear operator.
Then T preserves RAm(Z+) if and only if T is a nontransposing (P,Q)-operator.

Proof. It is easily checked that all nontransposing (P,Q)-operators preserve
RAm(Z+).

Suppose that T preserves RAm(Z+). By Lemma 3.1 we have that Tmaps lines
to lines and by applying Theorem 2.1 to Lemma 2.2 we have that T is a (P,Q)-
operator. Since all nontransposing (P,Q)-operators preserve RAm(Z+) it only re-
mains to show that if m = n then the transposition does not preserve RAm(Z+).

Let A =

[
3 3
4 4

]
⊕Im−2 ∈ Mm(Z+). Then by Example 1.1 we have that r(A) = m

and r(At) = m− 1, so that (A,O) ∈ RAm(Z+) while (At, O) ̸∈ RAm(Z+). Thus T
is a nontransposing (P,Q)-operator. 2

3.2. Linear operators that preserve RA1(Z
+)

Lemma 3.3. If T : Mm,n(Z
+) → Mm,n(Z

+) is a surjective linear operator which
preserves RA1(Z

+), then T maps lines to lines.

Proof. Suppose that T does not map lines to lines. Then, without loss of general-
ity, we may assume that either T (E1,1 + E1,2) = E1,1 + E2,2 or T (E1,1 + E2,1) =
E1,1 +E2,2 by Theorem 2.1. In either case, let Y = O and X be either E1,1 +E1,2

or E1,1 + E2,1, so that (X,Y ) ∈ RA1(Z
+) while (T (X), T (Y )) ̸∈ RA1(Z

+), a con-
tradiction. Thus T maps lines to lines. 2

Theorem 3.4. Let T : Mm,n(Z
+) → Mm,n(Z

+) be a surjective linear operator.
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Then T preserves RA1(Z
+) if and only if T is a nontransposing (P,Q)-operator.

Proof. It is easily checked that all nontransposing (P,Q)-operators preserve
RA1(Z

+).
Suppose that T preserves RA1(Z

+). By applying Lemma 3.3 and Theorem 2.1
to Lemma 2.2 we have that if T preserves RA1(Z

+) then T is a (P,Q)-operator.
Since all nontransposing (P,Q)-operators preserve RA1(Z

+) it only remains to
show that if m = n then the transposition does not preserve RA1(Z

+). Let
X =

[
3 4

]⊕
Om−1,m−2 ∈ Mm(Z+) and Y = O ∈ Mm(Z+), (X,Y ) ∈ RA1(Z

+)
but (Xt, Y t) /∈ RA1(Z

+). So, transposition operator does not preserve the set
RA1(Z

+). Thus T is a nontransposing (P,Q)-operator. 2

3.3. Linear operators that preserve RAρ(Z
+)

Lemma 3.5. If T : Mm,n(Z
+) → Mm,n(Z

+) is a surjective linear operator which
preserves RAρ(Z

+), min{m,n} ≥ 3, then T maps lines to lines.

Proof. The sum of three distinct weighted cells has row rank at most 3. Thus
T (E1,1 + E1,2 + E2,1) is either a sum of 3 collinear cells, and hence has row rank
1, or is contained in two lines, and hence has real rank 2, or is the sum of three
cells of row rank 3 and hence of real rank 3. Now, for X = E1,1 + E1,2 + E2,1 and
Y = E2,2, we have that (X,Y ) ∈ RAR(Z

+), and the image of Y is a single cell,
and hence ρ(T (Y )) = 1. Now, if ρ(T (X)) = 3, then T (X + Y ) must have row
rank 3 or 4, and hence (T (X), T (Y )) ̸∈ RAR(Z

+), a contradiction. If ρ(T (X)) = 1,
clearly (T (X), T (Y )) ̸∈ RAR(Z

+) since T (X + Y ) ̸= O. Thus ρ(T (X)) = 2, and
r(T (X + Y )) = 1. However it is straightforward to see that the sum of four cells
has the column rank 1 if and only if they lie either in a line or in the intersection
of two rows and two columns. The matrix T (X + Y ) is a sum of four cells. These
cells do not lie in a line since ρ(T (X)) = 2. Thus T (X + Y ) must be the sum of
four cells which lie in the intersection of two rows and two columns. Similarly, for
any i, j, k, l, T (Ei,j +Ei,k +El,j +El,k) must lie in the intersection of two rows and
two columns. It follows that any two rows must be mapped into two lines. Since T
is bijective, if some pair of two rows is mapped into two rows (resp. columns), any
pair of two rows is mapped into two rows (resp. columns). Similarly, if some pair
of two columns is mapped into two rows (resp. columns), any pair of two columns
is mapped into two rows (resp. columns).

Now, the image of three rows is contained in three lines, two of which are the
image of two rows, thus, every row is mapped into a line. Similarly for columns.
Thus, T maps lines to lines. 2

Theorem 3.6. Let T : Mm,n(Z
+) → Mm,n(Z

+) be a surjective linear operator.
Then T preserves RAρ(Z

+) if and only if T is a nontransposing (P,Q)-operator.

Proof. It is easily checked that all nontransposing (P,Q)-operators preserve
RAρ(Z

+).
By applying Lemma 3.5 and Theorem 2.1 to Lemma 2.2 we have that if T

preserves RAρ(Z
+) then T is a (P,Q)-operator. Since all nontransposing (P,Q)-
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operators preserve RAρ(Z
+) it only remains to show that in the case m = n the

operator X → Xt does not preserve RAρ(Z
+). Let X =

[
3 4
3 4

]⊕
Om−2,m−2 ∈

Mm(Z+) and Y = Om,m ∈ Mm(Z+). Then r(X+Y ) = 1 = ρ(X)−ρ(Y ) and hence
(X,Y ) ∈ RAρ(Z

+) while r(Xt + Y t) = 2 ̸= 1 = ρ(X) − ρ(Y ) so that (Xt, Y t) ̸∈
RAρ(Z

+). So, transposition operator does not preserve the set RAρ(Z
+). Thus T is

a nontransposing (P,Q)-operator. 2

3.4. Linear operators that preserve RMl(Z
+)

Lemma 3.7. If T : Mm(Z+) → Mm(Z+) is a surjective linear operator which
preserves RMl(Z

+), then T maps lines to lines.

Proof. Suppose that T−1 does not map rows to lines, say, without loss of generality,
that T−1(E1,1+E1,2) ≥ E1,1+E2,2. Then T (I) has nonzero entries in at most m−1
rows. Suppose T (I) has all zero entries in row j. Then for X = T−1(E1,j) and
Y = I, we have XY = X and hence (X,Y ) ∈ RMl(Z

+) however, T (X)T (Y ) = O
and hence (T (X), T (Y )) ̸∈ RMl(Z

+). This contradicts the fact that T preserves
RMl(Z

+).

Suppose that T−1 does not map columns to lines. Say, without loss of generality,
that T−1(E1,1 + E2,1) ≥ E1,1 + E2,2. That is T (E1,1 + E2,2) = E1,1 + E2,1. Then
for B = I, T (B) has row rank at most m − 1 since either the first two rows of
T (B) are equal or at least one of the rows from the 3rd through the mth is zero.
Let A = T−1(I), then we have that AB = A and hence (A,B) ∈ RMl(Z

+), while
r(T (A)T (B)) = r(T (B)) ≤ m − 1 < r(I) = r(T (A)) so that (T (A), T (B)) ̸∈
RMl(Z

+), a contradiction.

Thus T−1 and hence T map lines to lines. 2

Theorem 3.8. Let T : Mm(Z+) → Mm(Z+) be a surjective linear operator. Then
T preserves RMl(Z

+) if and only if T is a nontransposing (P, P t)-operator.

Proof. It is easily checked that all nontransposing (P,Q)-operators preserve
RMl(Z

+).

By applying Lemma 3.7 and Theorem 2.1 to Lemma 2.2 we have that if T
preserves RMl(Z

+) then T is a (P,Q)-operator.

To prove that Q = P t, assume on the contrary that QP ̸= I. Suppose that
T1(X) = (QP )X transforms the rth row into the tth row for some r ̸= t. We
consider the matrix X = Et,t, Y = I \ Er,r. Then XY = Et,t = X, which implies
(X,Y ) ∈ RMl(Z

+), but T (X)T (Y ) = PXQPY Q = P0Q = 0, since all the entries
of the tth row of QPY are zero. Thus (T (X), T (Y )) /∈ RMl(Z

+). Therefore T does
not preserve the set RMl(Z

+), a contradiction. Thus Q = P t and T is a (P, P t)-
operator.

Since all nontransposing (P, P t)-operators preserve RMl(Z
+) it only remains

to show that the operator X → Xt does not preserve RMl(Z
+), since row

and column permutations preserve RMl(Z
+). Let X =

[
1 1
1 2

]⊕
Im−2, Y =
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[
1 0
1 0

]⊕
Im−2. Then r(XY ) = r(

[
2 0
3 0

]⊕
Im−2) = m = r(X) so that

(X,Y ) ∈ RMl(Z
+) while r(XtY t) = r(

[
1 1
1 1

]⊕
Im−2) = m − 1 ̸= m = r(Xt)

so that (Xt, Y t) ̸∈ RMl(Z
+). So, transposition operator does not preserve the set

RMl(Z
+). Thus T is a nontransposing (P, P t)-operator. 2

3.5. Linear operators that preserve RMρ(Z
+)

Lemma 3.9. If T : Mm(Z+) → Mm(Z+) is a surjective linear operator which
preserves RMρ(Z

+), then T maps lines to lines.

Proof. If T does not preserve lines, then there exist indices i, j, k, l, i ̸= k, j ̸= l
such that nonzero entries of T (Ei,j) and T (Ek,l) lie in a line. Let P ′ ∈ Mn(Z

+)
be a matrix such that P = P ′ + Ei,j + Ek,l is a permutational matrix. Then
(P,O) ∈ RMρ(Z

+). However, r(T (X)) ≤ n− 1, and hence ρ(T (X)) ≤ n− 1. Thus
(T (X), O) /∈ RMρ(Z

+), a contradiction. Thus T maps lines to lines. 2

Theorem 3.10. Let T : Mm(Z+) → Mm(Z+) be a surjective linear operator. Then
T preserves RMρ(Z

+) if and only if T is a nontransposing (P, P t)-operator.

Proof. It is straightforward that operators under consideration preserve the set
RMρ(Z

+).
By applying Lemma 3.9 and Theorem 2.1 to Lemma 2.2 we have that if T

preserves RMρ(Z
+) then T is a (P,Q)-operator.

Let X =

[
0 1
0 0

]⊕
In−2, and Y =

[
1 0
0 0

]⊕
In−2. Then XY =[

0 0
0 0

]⊕
In−2, and hence (X,Y ) ∈ RMρ(Z

+). But XtY t =

[
0 0
1 0

]⊕
In−2,

and hence (Xt, Y t) ̸∈ RMρ(Z
+). This proves that T is a non-transposing (P,Q)-

operator.
Let us check that Q = P t. Assume in the contrary that QP ̸= I. Let QP

transforms rth row to tth with r ̸= t. We consider the matrix X = I \ Er,r,
Y = Er,r. Thus XY = 0 and hence (X,Y ) ∈ RMρ(Z

+). But T (X)T (Y ) =
PXQPY Q = P (I \ Er,r)Et,r)Q ̸= 0 and hence (T (X), T (Y )) /∈ RMρ(Z

+). This
contradiction proves that Q = P t. 2

3.6. Examples of non-surjective linear operators that preserve R∗∗(Z
+)

Let us see that there exist non invertible linear preservers of the sets R∗∗(Z
+).

Example 3.11.

1. Let m ≤ n, and Tm : Mm,n(Z
+) → Mm,n(Z

+) be a linear operator which
is defined on the basis by Tm(Ei,j) = Ei,i. Then Tm is not surjective but it
preserves RAm(Z+).

2. Let T1 : Mm,n(Z
+) → Mm,n(Z

+) be a linear operator which is defined on the
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basis by T1(Ei,j) = E1,1. Then T1 is not surjective but it preserves RA1(Z
+).

3. Let Tρ : Mm(Z+) → Mm(Z+) be a linear operator which is defined by

Tρ(X) = (
m∑

i,j=1

xi,j)Im. Then Tρ is not surjective but it preserves RMl(Z
+)

and RMρ(Z
+).

Proof.

1. By its definition Tm is not surjective. To see that Tm preserves RAm(Z+),
choose any A,B ∈ Mm,n(Z

+) with r(A + B) = m. Then there is no zero
row in A + B, and hence Tm(A + B) also has no zero rows and the rows
are all linearly independent. Thus r(Tm(A + B)) = m. Hence, Tm preserves
RAm(Z+).

2. It is trivial that T1 is not surjective but preserves RA1(Z
+).

3. It is trivial that Tρ is not surjective. If r(AB) = r(A) for some A,B ∈

Mm(Z+) then r(T (A)T (B)) = r((
m∑

i,j=1

ai,j)(
m∑

i,j=1

bi,j)Im) = m = r(T (A))

and r(T (A)T (B)) = r((
m∑

i,j=1

ai,j)(
m∑

i,j=1

bi,j)Im) = ρ(T (A)) + ρ(T (B)) − m.

Thus Tρ preserves RMl(Z
+) and RMρ(Z

+). 2
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