KYUNGPOOK Math. J. 53(2013), 175-184 http://dx.doi.org/10.5666/KMJ.2013.53.2.175

On *BN*-algebras

CHANG BUM KIM[†] Department of Mathematics, Kookmin University, Seoul, 136-702, Korea e-mail: cbkim@kookmin.ac.kr

HEE SIK KIM*

Department of Mathematics, Hanyang University, Seoul, 133-791, Korea e-mail: heekim@hanyang.ac.kr

ABSTRACT. In this paper, we introduce a BN-algebra, and we prove that a BN-algebra is 0-commutative, and an algebra X is a BN-algebra if and only if it is a 0-commutative BF-algebra. And we introduce a quotient BN-algebra, and we investigate some relations between BN-algebras and several algebras.

1. Introduction

The notion of *B*-algebra was introduced by J. Neggers and H. S. Kim ([7]). They defined a *B*-algebra as an algebra (X, *, 0) of type (2,0) (i.e., a non-empty set with a binary operation * and a constant 0) satisfying the following axioms:

- (B1) x * x = 0,
- (B2) x * 0 = x,
- (B) (x * y) * z = x * [z * (0 * y)]

for any $x, y, z \in X$.

Recently, C. B. Kim and H. S. Kim ([3]) defined a *BG*-algebra, which is a generalization of *B*-algebra. An algebra (X, *, 0) of type (2,0) is called a *BG*-algebra if it satisfies (B1), (B2), and

(BG) x = (x * y) * (0 * y)

for any $x, y \in X$. Also they introduced a *BM*-algebra. An algebra (X, *, 0) of type (2,0) is called a *BM*-algebra ([4]) if it satisfies (*B*2) and

^{*} Corresponding Author.

Received November 2, 2010; accepted July 30, 2012.

²⁰¹⁰ Mathematics Subject Classification: 06F35.

Key words and phrases: BN-algebra, B-algebra, BF-algebra, Quotient BN-algebra, BN_1 -algebra.

[†] This paper was supported by Kookmin University Research Fund, 2011-2012.

¹⁷⁵

(BM) (z * x) * (z * y) = y * x

for any $x, y, z \in X$.

Y. B. Jun, E. H. Roh and H. S. Kim ([2]) introduced the notion of a BH-algebra which is a generalization of BCK/BCI/BCH-algebras. An algebra (X, *, 0) of type (2,0) is called a BH-algebra if it satisfies (B1), (B2), and

(BH) x * y = y * x = 0 implies x = y

for any $x, y \in X$.

In [12], A. Walendziak introduced $BF/BF_1/BF_2$ -algebra. An algebra (X, *, 0) of type (2,0) is a *BF*-algebra if it satisfies (*B*1), (*B*2) and

(BF)
$$0 * (x * y) = y * x$$

for any $x, y \in X$. A *BF*-algebra is called a *BF*₁-algebra (resp., a *BF*₂-algebra) if it satisfies (*BG*) (resp., (*BH*)). In this paper, we define a *BN*-algebra and investigate some relations between *BN*-algebras and several algebras, i.e., *B*-algebras, *BM*-algebras, *BF*-algebras, Coxeter-algebras, etc..

2. BN-algebras

In this section, we define a BN-algebra and investigate some relations between BN-algebras and other algebras.

Definition 2.1. A *BN*-algebra is an algebra (X, *, 0) of type (2,0) satisfying (B1), (B2), and the following axiom:

(BN)
$$(x * y) * z = (0 * z) * (y * x)$$

for any $x, y, z \in X$.

Example 2.2. Let $X := \{0, 1, 2\}$ be a set. If we define a binary operation "*" on X as follows:

*	0	1	2
0	0	1	2
1	1	0	1
2	2	1	0

then (X, *, 0) is a *BN*-algebra.

Theorem 2.3. If (X, *, 0) is a BN-algebra, then (X, *, 0) is a BF-algebra.

Proof. If we let z := 0 in (BN), we obtain x * y = 0 * (y * x). Hence (X, *, 0) is a *BF*-algebra.

Remark. The converse of Theorem 2.3 does not hold in general.

Example 2.4. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1		3
0	0	2	1	3
1	1	0	1	2
$\frac{1}{2}$	2	$\begin{array}{c} 2\\ 0\\ 2\end{array}$	0	2
3	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1	1	0

Then (X, *, 0) is a *BF*-algebra, but not a *BN*-algebra, since $(3 * 1) * 3 = 2 \neq (0 * 3) * (1 * 3) = 1$.

Theorem 2.5. If (X, *, 0) is a BN-algebra, then

(i)
$$0 * (0 * x) = x$$
,
(ii) $y * x = (0 * x) * (0 * y)$,
(iii) $(0 * x) * y = (0 * y) * x$,
(iv) $x * y = 0 \Longrightarrow y * x = 0$,
(v) $0 * x = 0 * y \Longrightarrow x = y$,
(vi) $(x * z) * (y * z) = (z * y) * (z * x)$,
for any $x, y, z \in X$.
Proof. (i). If we let $y := 0, z := 0$ in (BN) , then $(x * 0) * 0 = (0 * 0) * (0 * x)$. By
applying $(B1)$ and $(B2)$, we obtain $0 * (0 * x) = x$.
(ii). By $(B2)$ and (BN) , $y * x = (y * 0) * x = (0 * x) * (0 * y)$.
(iii). By applying $(B2)$ and (BN) , we obtain $(0 * x) * y = (0 * y) * x$.
(iv). By Theorem 2.3, $0 = 0 * 0 = 0 * (x * y) = y * x$.
(v). If $0 * x = 0 * y$, then by (i) we have $x = 0 * (0 * x) = 0 * (0 * y) = y$.

(vi). (x * z) * (y * z) = (0 * (y * z)) * (z * x) = (z * y) * (z * x) by (BN) and Theorem 2.3.

Definition 2.6. An algebra (X, *, 0) is said to be 0-commutative if x * (0 * y) = y * (0 * x) for all $x, y \in X$.

Theorem 2.7. If (X, *, 0) is a BN-algebra, then it is 0-commutative. Proof. Let x and y be any elements of X. Then

$$\begin{aligned} x * (0 * y) &= [(0 * (0 * x)) * (0 * y)] & [\text{Theorem 2.5(i)}] \\ &= [0 * (0 * y)] * [(0 * x) * 0] & [(\text{BN})] \\ &= y * (0 * x). & [\text{Theorem 2.5(i) and (B2)}] & \Box \end{aligned}$$

Theorem 2.8. If (X, *, 0) is a 0-commutative BF-algebra, then it is a BN-algebra.

Proof. Let x, y, z be any elements of X. Then

$$\begin{array}{lll} (0*z)*(y*x) &=& (0*z)*(0*(x*y)) & [(\mathrm{BF})] \\ &=& (x*y)*(0*(0*z)) & [0\text{-commutative}] \\ &=& (x*y)*z & & [(\mathrm{BF}) \text{ and } (\mathrm{B2})]. \end{array}$$

Hence (X, *, 0) is a *BN*-algebra.

Using Theorem 2.3, Theorem 2.7 and Theorem 2.8, we obtain the following result.

Theorem 2.9. (X, *, 0) is a 0-commutative BF-algebra if and only if it is a BN-algebra.

Proposition 2.10([4]). If (X, *, 0) is a 0-commutative B-algebra, then

$$(0 * x) * (0 * y) = y * x$$

for any $x, y \in X$.

Proposition 2.11([11]). If (X, *, 0) is a *B*-algebra, then

$$0 * (x * y) = y * x$$

for any $x, y \in X$.

Corollary 2.12. If (X, *, 0) is a 0-commutative B-algebra, then it is a BN-algebra.

Proof. It follows immediately from Theorem 2.9 and Proposition 2.11. \Box

Remark. The converse of Corollary 2.12 does not hold in general.

Example 2.13. Let $X := \{0, 1, 2\}$ be a set with the table given in Example 2.2. Then it is easy to show that (X, *, 0) is a *BN*-algebra, but not a *B*-algebra, since $(1 * 1) * 2 = 2 \neq 1 * [2 * (0 * 1)] = 0$.

The condition, 0-commutativity, is very necessary for B-algebras to be BN-algebras. Consider the following example.

Example 2.14. Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following table:

*	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	5	3	4
2	2	1	0	4	5	3
3	3	5	4	0	1	2
4	4	3	5	2	0	1
5	$ \begin{array}{c c} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	4	3	1	2	0

Then it is easy to show that (X, *, 0) is a *B*-algebra, but it is not 0-commutative, since $1 * (0 * 3) = 1 * 3 = 5 \neq 3 * (0 * 1) = 3 * 2 = 4$. Moreover, we know that (X, *, 0) is not a *BN*-algebra, since $(2 * 3) * 5 = 1 \neq (0 * 5) * (3 * 2) = 2$.

Every abelian group determines a BN-algebra. Consider the following theorem.

Theorem 2.15. Let $(X; \circ, 0)$ be an abelian group. If we define $x * y := x \circ y^{-1}, \forall x, y \in X$, then (X; *, 0) is a BN-algebra.

Proof. We see that $x * x = x \circ x^{-1} = 0$ and $x * 0 = x \circ 0^{-1} = x \circ 0 = x$. For any $x, y, z \in X$,

$$(x * y) * z = (x \circ y^{-1}) \circ z^{-1}$$

= $z^{-1} \circ (x \circ y^{-1})$
= $z^{-1} \circ (y^{-1} \circ x)$
= $z^{-1} \circ (x^{-1} \circ y)^{-1}$
= $z^{-1} * (x^{-1} \circ y)$
= $(0 * z) * (y \circ x^{-1})$
= $(0 * z) * (y * x).$

Hence (X, *, 0) is a *BN*-algebra.

Theorem 2.16. Let (X, *, 0) be an algebra with 0 * (0 * x) = x for any $x \in X$. Then (X, *, 0) is 0-commutative if and only if (0 * x) * (0 * y) = y * x for any $x, y \in X$. *Proof.* If (X, *, 0) is 0-commutative, then

$$(0 * x) * (0 * y) = y * (0 * (0 * x))$$
 [X: 0-commutative]
= $y * x$

for any $x, y \in X$. Conversely, if (0 * x) * (0 * y) = y * x for any $x, y \in X$, then

$$\begin{aligned} x*(0*y) &= & (0*(0*x))*(0*y) \\ &= & y*(0*x), \end{aligned}$$

proving the theorem.

Definition 2.17. An algebra (X, *, 0) is said to have a *condition* (D) if (x * y) * z = x * (z * y) for any $x, y, z \in X$.

Theorem 2.18. If (X, *, 0) is a BN-algebra with the condition (D), then

(i)
$$0 * x = x$$
,

(ii)
$$x * y = y * x$$

for any $x, y \in X$.

Proof. (i). If we let x := 0, z := 0 in (D), then 0 * y = 0 * (0 * y) = y by Theorem 2.5(i). (ii). x * y = x * (0 * y) = y * (0 * x) = y * x by Theorem 2.7 and (i).

Example 2.19. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	$\overline{7}$	6
2	2	3	0	1	6	7		5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	$\overline{7}$	6	1	0	3	2
6	6	$\overline{7}$	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

Then (X, *, 0) is a *BN*-algebra with the condition (D).

Theorem 2.20. If (X, *, 0) is a BN-algebra with the condition (D), then it is a B-algebra.

Proof. Let x, y, z be any elements of X. Then

$$x * (z * (0 * y)) = x * (z * y)$$
 [Theorem 2.18(i)]
= $(x * y) * z.$ [(D)]

Hence (X, *, 0) is a *B*-algebra.

Theorem 2.21. Let (X, *, 0) be a BN-algebra with the condition (D), then (X, *, 0) is an abelian group.

Proof. Since (X, *, 0) is a *BN*-algebra, x * x = 0 for any $x \in X$. We may regard x as its own inverse, i.e., $x^{-1} = x$. By applying (*B*2) and Theorem 2.18(i), we obtain x * 0 = 0 * x = x, i.e., 0 is the identity element for *A*. Since (x * y) * z = x * (z * y) = x * (y * z) by Theorem 2.18(ii), the associative law holds. Theorem 2.18(ii) shows that (X, *, 0) is an abelian group. \Box

Theorem 2.22. If (X, *, 0) is a BN-algebra with the condition (D), then it is a BH-algebra.

Proof. Let x * y = 0 and y * x = 0. Then, by Theorem 2.18, we have x = x * 0 = x * (y * x) = (x * x) * y = 0 * y = y. Hence (X, *, 0) is a *BH*-algebra. \Box

Definition 2.23([5]). A Coxeter algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the axioms (B1), (B2), and (As) (x*y)*z = x*(y*z) for any $x, y, z \in X$.

It is known that a Coxeter algebra is a special type of abelian groups (see [5]).

Proposition 2.24([5]). If (X, *, 0) is a Coxeter algebra, then

- (i) 0 * x = x,
- (ii) x * y = y * x

for any $x, y \in X$.

Proposition 2.25. Every Coxeter algebra is a BN-algebra.

Proof. Let (X, *, 0) be a Coxeter algebra. Given $x, y, z \in X$, (0 * z) * (y * x) = (y * x) * (0 * z) = (x * y) * z, by Proposition 2.24. Hence (X, *, 0) is a *BN*-algebra. □

Remark. The converse of Theorem 2.25 does not hold in general.

Example 2.26. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
$\frac{1}{2}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1	0	1
3	3	1	1	0

Then (X, *, 0) is a *BN*-algebra, but not a Coxeter algebra, since $(1 * 1) * 2 = 2 \neq 1 * (1 * 2) = 0$.

Proposition 2.27. If (X, *, 0) is a BN-algebra with the condition (D) if and only if it is a Coxeter algebra.

Proof. For any $x, y, z \in x$,

$$(x * y) * z = x * (z * y) [(D)]$$

= $x * (y * z)$ [Theorem 2.18(ii)]

Hence (X, *, 0) is a Coxeter algebra.

Conversely, assume that (X, *, 0) is a Coxeter algebra. By Theorem 2.15, it is enough to show the condition (D). For any $x, y, z \in X$,

$$(x * y) * z = x * (y * z)$$
 [X: Coxeter algebra]
= $x * (z * y)$ [Proposition 2.24(ii)]

This completes the proof.

C. B. Kim and H. S. Kim ([4]) introduced and investigated BM-algebras. A BM-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

(B2)
$$x * 0 = x$$

(BM)
$$(z * x) * (z * y) = y * x$$

for any $x, y, z \in X$.

It is known that the concept of a BM-algebra is equivalent to the concept of a 0-commutative B-algebra (see [4]).

By Theorem 3.3 and Theorem 3.5 of [4], (X, *, 0) is a Coxeter algebra if and only if (X, *, 0) is a *BM*-algebra with 0 * x = x for any $x \in X$. So we have following

the result.

Corollary 2.28. (X, *, 0) is a BN-algebra with the condition (D) if and only if (X, *, 0) is a BM-algebra with 0 * x = x for any $x \in X$.

By applying Theorem 2.3, Theorem 2.12 and the results of [4] mentioned above, we obtain the following relation:

The class of Coxeter algebras \subset the class of BM-algebras \subset the class of BN-algebras \subset the class of BF-algebras.

3. Quotient *BN*-algebras

In this section, we construct the quotient BN-algebra and investigate their properties.

Definition 3.1. Let (X, *, 0) be a *BN*-algebra and let $\emptyset \neq S \subseteq X$. *S* is said to be a *subalgebra* of *X* if $x * y \in S$ for any $x, y \in S$. *S* is said to be *normal* of *X* if $(x * a) * (y * b) \in S$, whenever $x * y, a * b \in S$.

Example 3.2. In Example 2.26, $S := \{0, 3\}$ is a normal subset of X.

Theorem 3.3. Every normal subset S of a BN-algebra (X, *, 0) is a subalgebra of X.

Proof. If $x, y \in S$, then $x * 0, y * 0 \in S$. Since S is normal, $x * y = (x * y) * (0 * 0) \in S$. Thus S is a subalgebra of A.

Lemma 3.4. Let S be a normal subalgebra of a BN-algebra (X, *, 0). If $x * y \in S$, then $y * x \in S$.

Proof. Let $x * y \in S$. Since $y * y = 0 \in S$ and S is normal, $y * x = (y * x) * (y * y) \in S$. \Box

We construct a quotient BN-algebra using the notion of normal subalgebra as follows. Let (X, *, 0) be a BN-algebra and let S be a normal subalgebra of X. Define a relation \sim_S on X by $x \sim_S y$ if and only if $x * y \in S$, where $x, y \in X$. Then it is easy to show that \sim_S is an equivalence relation on X. Denote the equivalence class containing x by $[x]_S$, i.e., $[x]_S := \{y \in X \mid x \sim_S y\}$ and let $X/S := \{[x]_S \mid x \in X\}$.

Theorem 3.5. Let S be a normal subalgebra of a BN-algebra (X, *, 0). Then X/S is a BN-algebra.

Proof. If we define $[x]_S * [y]_S = [x * y]_S$, then the operation "*" is well-defined, since if $x \sim_S p$ and $y \sim_S q$, then $x * p \in S$ and $y * q \in S$ implies $(x * y) * (p * q) \in S$ by normality of S. So $x * y \sim_S p * q$ and so $[x * y]_S = [p * q]_S$. Note that $[0]_S = \{x \in X \mid x \sim_S 0\} = \{x \in X \mid x * 0 \in S\} = \{x \in X \mid x \in S\} = S$. Checking remaining axioms is trivial and we omit the proof.

The BN-algebra X/S discussed in Theorem 3.5 is called the quotient BN-

algebra of X by S.

Let (X, *, 0) and (Y, *, 0) be BN-algebras. A mapping $\phi : X \longrightarrow Y$ is called a homomorphism from X into Y if $\phi(x*y) = \phi(x)*\phi(y)$ for any $x, y \in X$. Observe that $\phi(0_X) = 0_Y$. Indeed, $\phi(0_X) = \phi(x*x) = \phi(x)*\phi(x) = 0_Y$. We denote by $Ker\phi$ the subset $\{x \in X \mid \phi(x) = 0_Y\}$ of X. (It is called the *kernel* of the homomorphism). The proof of Theorem 3.6 follows from the Homomorphism Theorem for Algebras([6, pp. 28-29]), and we omit the proof.

Theorem 3.6. Let S be a normal subalgebra of a BN-algebra X. Then the mapping $\gamma : X \longrightarrow X/S$ given by $\gamma(x) := [x]_S$ is an epimorphism of BN-algebras and $Ker\gamma = S$.

Definition 3.7. A *BN*-algebra (X, *, 0) is said to be a *BN*₁-algebra if it satisfies the condition:

 $(BN_1) \ x = (x * y) * y$ for any $x, y \in X$.

Example 3.8. Let $X := \{0, 1, 2, 3, 4, 5, 6, 7\}$ be a set as in Example 2.19. Then (X, *, 0) is a BN_1 -algebra.

Proposition 3.9. If (X, *, 0) is a BN_1 -algebra, then it is a BG-algebra.

Proof. Let (X, *, 0) be a BN_1 -algebra. If we let y := x in (BN_1) , then x = (x * x) * x = 0 * x for any $x \in A$. Thus we obtain

$$(x * y) * (0 * y) = (x * y) * y = x.$$

Hence (X, *, 0) is a *BG*-algebra.

Corollary 3.10. Let (X, *, 0) be a BN_1 -algebra. If x * y = 0, then x = y.

Proof. Since x = 0 * x for any $x \in X$ by the proof of Proposition 3.9, we obtain x = (x * y) * y = 0 * y = y.

Theorem 3.11. Let $\phi : X \longrightarrow Y$ be a homomorphism from a BN-algebra (X, *, 0) into a BN₁-algebra (Y, *, 0). Then the kernel Ker ϕ of ϕ is a normal subalgebra of X.

Proof. Since $0_X \in Ker\phi$, $Ker\phi \neq \emptyset$. If $x, y \in Ker\phi$, then

$$\phi(x * y) = \phi(x) * \phi(y) = 0_B * 0_B = 0_B,$$

i.e., $x * y \in Ker\phi$. Hence $Ker\phi$ is a subalgebra of X. Let $x * y, a * b \in Ker\phi$. Then $\phi(x * y) = \phi(x) * \phi(y) = 0_B$ and $\phi(a * b) = \phi(a) * \phi(b) = 0_Y$. Since Y is a BN_1 -algebra, by Corollary 3.10, $\phi(x) = \phi(y)$ and $\phi(a) = \phi(b)$. Hence

$$\begin{aligned} \phi((x*a)*(y*b)) &= \phi(x*a)*\phi(y*b) \\ &= (\phi(x)*\phi(a))*(\phi(y)*\phi(b)) \\ &= (\phi(x)*\phi(a))*(\phi(x)*\phi(a)) \\ &= 0_Y. \end{aligned}$$

Thus $(x * a) * (y * b) \in Ker\phi$. Hence $Ker\phi$ is a normal subalgebra of X.

Corollary 3.12. Let $\phi : X \longrightarrow Y$ be a homomorphism from a BN-algebra (X, *, 0) into a BN₁-algebra (Y, *, 0). Then $X/\operatorname{Ker} \phi \simeq \operatorname{Im} \phi$. In particular, if ϕ is surjective, then $X/\operatorname{Ker} \phi \simeq Y$.

Acknowledgements The authors are grateful to the referee's valuable suggestions and help.

References

- J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems, 8(2001), 1-6.
- [2] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebra, Sci. Math., 1(1998), 347-354.
- [3] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41(2008), 497-505.
- [4] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japonicae 63(2006), 421-427.
- [5] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J., 26(2004), 251-272.
- [6] R. Mckenzie, G. F. Mcnulty and W. Taylor, Algebras, Lattices, Varieties, Vol. 1, Wadsworth and Brooks/Cole, Monterey, California, 1987.
- [7] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54(2002), 21-29.
- [8] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for Balgebras, Intern. Math. J., 2(2002), 207-214.
- [9] J. Neggers and H. S. Kim, On β-algebras, Math. Slovaca, **52**(2002), 517-530.
- [10] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japonicae, Online e-2005, (2005),49-53.
- [11] A. Walendziak, Some axiomatizations of B-algebras, Math Slovaca, 56(2006), 301-306.
- [12] A. Walendziak, On BF-algebras, Math Slovaca, 57(2007), 119-128.
- [13] X. Zhang and R. Ye, BZ-algebra and group, J. Math. Phy. Sci., 29(1995), 223-233.