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Abstract. In this paper, we introduce a BN -algebra, and we prove that a BN -algebra

is 0-commutative, and an algebra X is a BN -algebra if and only if it is a 0-commutative

BF -algebra. And we introduce a quotient BN -algebra, and we investigate some relations

between BN -algebras and several algebras.

1. Introduction

The notion of B-algebra was introduced by J. Neggers and H. S. Kim ([7]).
They defined a B-algebra as an algebra (X, ∗, 0) of type (2,0) (i.e., a non-empty set
with a binary operation ∗ and a constant 0) satisfying the following axioms:

(B1) x ∗ x = 0,

(B2) x ∗ 0 = x,

(B) (x ∗ y) ∗ z = x ∗ [z ∗ (0 ∗ y)]

for any x, y, z ∈ X.
Recently, C. B. Kim and H. S. Kim ([3]) defined a BG-algebra, which is a

generalization of B-algebra. An algebra (X, ∗, 0) of type (2,0) is called a BG-algebra
if it satisfies (B1), (B2), and

(BG) x = (x ∗ y) ∗ (0 ∗ y)

for any x, y ∈ X. Also they introduced a BM -algebra. An algebra (X, ∗, 0) of type
(2,0) is called a BM -algebra ([4]) if it satisfies (B2) and
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(BM) (z ∗ x) ∗ (z ∗ y) = y ∗ x

for any x, y, z ∈ X.
Y. B. Jun, E. H. Roh and H. S. Kim ([2]) introduced the notion of a BH-algebra

which is a generalization of BCK/BCI/BCH-algebras. An algebra (X, ∗, 0) of type
(2,0) is called a BH-algebra if it satisfies (B1), (B2), and

(BH) x ∗ y = y ∗ x = 0 implies x = y

for any x, y ∈ X.
In [12], A. Walendziak introduced BF/BF1/BF2-algebra. An algebra (X, ∗, 0)

of type (2,0) is a BF -algebra if it satisfies (B1), (B2) and

(BF) 0 ∗ (x ∗ y) = y ∗ x.

for any x, y ∈ X. A BF -algebra is called a BF1-algebra (resp., a BF2-algebra) if
it satisfies (BG) (resp., (BH)). In this paper, we define a BN -algebra and inves-
tigate some relations between BN -algebras and several algebras, i.e., B-algebras,
BM -algebras, BF -algebras, Coxeter-algebras, etc..

2. BN-algebras

In this section, we define a BN -algebra and investigate some relations between
BN -algebras and other algebras.

Definition 2.1. A BN -algebra is an algebra (X, ∗, 0) of type (2,0) satisfying
(B1), (B2), and the following axiom:

(BN) (x ∗ y) ∗ z = (0 ∗ z) ∗ (y ∗ x)

for any x, y, z ∈ X.

Example 2.2. Let X := {0, 1, 2} be a set. If we define a binary operation “∗” on
X as follows:

∗ 0 1 2
0 0 1 2
1 1 0 1
2 2 1 0

then (X, ∗, 0) is a BN -algebra.

Theorem 2.3. If (X, ∗, 0) is a BN -algebra, then (X, ∗, 0) is a BF -algebra.

Proof. If we let z := 0 in (BN), we obtain x ∗ y = 0 ∗ (y ∗ x). Hence (X, ∗, 0) is a
BF -algebra. 2

Remark. The converse of Theorem 2.3 does not hold in general.

Example 2.4. Let X := {0, 1, 2, 3} be a set with the following table:
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∗ 0 1 2 3
0 0 2 1 3
1 1 0 1 2
2 2 2 0 2
3 3 1 1 0

Then (X, ∗, 0) is a BF -algebra, but not a BN -algebra, since (3 ∗ 1) ∗ 3 = 2 ̸=
(0 ∗ 3) ∗ (1 ∗ 3) = 1.

Theorem 2.5. If (X, ∗, 0) is a BN -algebra, then

(i) 0 ∗ (0 ∗ x) = x,

(ii) y ∗ x = (0 ∗ x) ∗ (0 ∗ y),
(iii) (0 ∗ x) ∗ y = (0 ∗ y) ∗ x,
(iv) x ∗ y = 0 =⇒ y ∗ x = 0,

(v) 0 ∗ x = 0 ∗ y =⇒ x = y,

(vi) (x ∗ z) ∗ (y ∗ z) = (z ∗ y) ∗ (z ∗ x),
for any x, y, z ∈ X.

Proof. (i). If we let y := 0, z := 0 in (BN), then (x ∗ 0) ∗ 0 = (0 ∗ 0) ∗ (0 ∗ x). By
applying (B1) and (B2), we obtain 0 ∗ (0 ∗ x) = x.
(ii). By (B2) and (BN), y ∗ x = (y ∗ 0) ∗ x = (0 ∗ x) ∗ (0 ∗ y).
(iii). By applying (B2) and (BN), we obtain (0 ∗ x) ∗ y = (0 ∗ y) ∗ x.
(iv). By Theorem 2.3, 0 = 0 ∗ 0 = 0 ∗ (x ∗ y) = y ∗ x.
(v). If 0 ∗ x = 0 ∗ y, then by (i) we have x = 0 ∗ (0 ∗ x) = 0 ∗ (0 ∗ y) = y.
(vi). (x ∗ z) ∗ (y ∗ z) = (0 ∗ (y ∗ z)) ∗ (z ∗ x) = (z ∗ y) ∗ (z ∗ x) by (BN) and Theorem
2.3. 2

Definition 2.6. An algebra (X, ∗, 0) is said to be 0-commutative if x ∗ (0 ∗ y) =
y ∗ (0 ∗ x) for all x, y ∈ X.

Theorem 2.7. If (X, ∗, 0) is a BN -algebra, then it is 0-commutative.

Proof. Let x and y be any elements of X. Then

x ∗ (0 ∗ y) = [(0 ∗ (0 ∗ x)) ∗ (0 ∗ y)] [Theorem 2.5(i)]

= [0 ∗ (0 ∗ y)] ∗ [(0 ∗ x) ∗ 0] [(BN)]

= y ∗ (0 ∗ x). [Theorem 2.5(i) and (B2)] 2

Theorem 2.8. If (X, ∗, 0) is a 0-commutative BF -algebra, then it is a BN -algebra.

Proof. Let x, y, z be any elements of X. Then

(0 ∗ z) ∗ (y ∗ x) = (0 ∗ z) ∗ (0 ∗ (x ∗ y)) [(BF)]

= (x ∗ y) ∗ (0 ∗ (0 ∗ z)) [0-commutative]

= (x ∗ y) ∗ z [(BF) and (B2)].
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Hence (X, ∗, 0) is a BN -algebra. 2

Using Theorem 2.3, Theorem 2.7 and Theorem 2.8, we obtain the following
result.

Theorem 2.9. (X, ∗, 0) is a 0-commutative BF -algebra if and only if it is a BN -
algebra.

Proposition 2.10([4]). If (X, ∗, 0) is a 0-commutative B-algebra, then

(0 ∗ x) ∗ (0 ∗ y) = y ∗ x

for any x, y ∈ X.

Proposition 2.11([11]). If (X, ∗, 0) is a B-algebra, then

0 ∗ (x ∗ y) = y ∗ x

for any x, y ∈ X.

Corollary 2.12. If (X, ∗, 0) is a 0-commutative B-algebra, then it is a BN -algebra.

Proof. It follows immediately from Theorem 2.9 and Proposition 2.11. 2

Remark. The converse of Corollary 2.12 does not hold in general.

Example 2.13. Let X := {0, 1, 2} be a set with the table given in Example 2.2.
Then it is easy to show that (X, ∗, 0) is a BN -algebra, but not a B-algebra, since
(1 ∗ 1) ∗ 2 = 2 ̸= 1 ∗ [2 ∗ (0 ∗ 1)] = 0.

The condition, 0-commutativity, is very necessary for B-algebras to be BN -
algebras. Consider the following example.

Example 2.14. Let X := {0, 1, 2, 3, 4, 5} be a set with the following table:

∗ 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 5 3 4
2 2 1 0 4 5 3
3 3 5 4 0 1 2
4 4 3 5 2 0 1
5 5 4 3 1 2 0

Then it is easy to show that (X, ∗, 0) is a B-algebra, but it is not 0-commutative,
since 1∗ (0∗3) = 1∗3 = 5 ̸= 3∗ (0∗1) = 3∗2 = 4. Moreover, we know that (X, ∗, 0)
is not a BN -algebra, since (2 ∗ 3) ∗ 5 = 1 ̸= (0 ∗ 5) ∗ (3 ∗ 2) = 2.

Every abelian group determines a BN -algebra. Consider the following theorem.
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Theorem 2.15. Let (X; ◦, 0) be an abelian group. If we define x ∗ y := x ◦
y−1, ∀x, y ∈ X, then (X; ∗, 0) is a BN -algebra.

Proof. We see that x ∗ x = x ◦ x−1 = 0 and x ∗ 0 = x ◦ 0−1 = x ◦ 0 = x. For any
x, y, z ∈ X,

(x ∗ y) ∗ z = (x ◦ y−1) ◦ z−1

= z−1 ◦ (x ◦ y−1)

= z−1 ◦ (y−1 ◦ x)
= z−1 ◦ (x−1 ◦ y)−1

= z−1 ∗ (x−1 ◦ y)
= (0 ∗ z) ∗ (y ◦ x−1)

= (0 ∗ z) ∗ (y ∗ x).

Hence (X, ∗, 0) is a BN -algebra. 2

Theorem 2.16. Let (X, ∗, 0) be an algebra with 0∗(0∗x) = x for any x ∈ X. Then
(X, ∗, 0) is 0-commutative if and only if (0 ∗ x) ∗ (0 ∗ y) = y ∗ x for any x, y ∈ X.

Proof. If (X, ∗, 0) is 0-commutative, then

(0 ∗ x) ∗ (0 ∗ y) = y ∗ (0 ∗ (0 ∗ x)) [X: 0-commutative]

= y ∗ x

for any x, y ∈ X. Conversely, if (0 ∗ x) ∗ (0 ∗ y) = y ∗ x for any x, y ∈ X, then

x ∗ (0 ∗ y) = (0 ∗ (0 ∗ x)) ∗ (0 ∗ y)
= y ∗ (0 ∗ x),

proving the theorem. 2

Definition 2.17. An algebra (X, ∗, 0) is said to have a condition (D) if (x∗y)∗z =
x ∗ (z ∗ y) for any x, y, z ∈ X.

Theorem 2.18. If (X, ∗, 0) is a BN -algebra with the condition (D), then

(i) 0 ∗ x = x,

(ii) x ∗ y = y ∗ x

for any x, y ∈ X.

Proof. (i). If we let x := 0, z := 0 in (D), then 0 ∗ y = 0 ∗ (0 ∗ y) = y by Theorem
2.5(i). (ii). x ∗ y = x ∗ (0 ∗ y) = y ∗ (0 ∗ x) = y ∗ x by Theorem 2.7 and (i). 2

Example 2.19. Let X := {0, 1, 2, 3} be a set with the following table:
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∗ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Then (X, ∗, 0) is a BN -algebra with the condition (D).

Theorem 2.20. If (X, ∗, 0) is a BN -algebra with the condition (D), then it is a
B-algebra.

Proof. Let x, y, z be any elements of X. Then

x ∗ (z ∗ (0 ∗ y)) = x ∗ (z ∗ y) [Theorem 2.18(i)]

= (x ∗ y) ∗ z. [(D)]

Hence (X, ∗, 0) is a B-algebra. 2

Theorem 2.21. Let (X, ∗, 0) be a BN -algebra with the condition (D), then (X, ∗, 0)
is an abelian group.

Proof. Since (X, ∗, 0) is a BN -algebra, x ∗ x = 0 for any x ∈ X. We may regard x
as its own inverse, i.e., x−1 = x. By applying (B2) and Theorem 2.18(i), we obtain
x ∗ 0 = 0 ∗x = x, i.e., 0 is the identity element for A. Since (x ∗ y) ∗ z = x ∗ (z ∗ y) =
x ∗ (y ∗ z) by Theorem 2.18(ii), the associative law holds. Theorem 2.18(ii) shows
that (X, ∗, 0) is an abelian group. 2

Theorem 2.22. If (X, ∗, 0) is a BN -algebra with the condition (D), then it is a
BH-algebra.

Proof. Let x ∗ y = 0 and y ∗ x = 0. Then, by Theorem 2.18, we have x = x ∗ 0 =
x ∗ (y ∗ x) = (x ∗ x) ∗ y = 0 ∗ y = y. Hence (X, ∗, 0) is a BH-algebra. 2

Definition 2.23([5]). A Coxeter algebra is a non-empty set X with a constant 0
and a binary operation ”∗” satisfying the axioms (B1), (B2), and (As) (x∗y)∗ z =
x ∗ (y ∗ z) for any x, y, z ∈ X.

It is known that a Coxeter algebra is a special type of abelian groups (see [5]).

Proposition 2.24([5]). If (X, ∗, 0) is a Coxeter algebra, then

(i) 0 ∗ x = x,

(ii) x ∗ y = y ∗ x

for any x, y ∈ X.
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Proposition 2.25. Every Coxeter algebra is a BN -algebra.

Proof. Let (X, ∗, 0) be a Coxeter algebra. Given x, y, z ∈ X, (0 ∗ z) ∗ (y ∗ x) =
(y∗x)∗(0∗z) = (x∗y)∗z, by Proposition 2.24. Hence (X, ∗, 0) is a BN -algebra. 2

Remark. The converse of Theorem 2.25 does not hold in general.

Example 2.26. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 1 2 3
1 1 0 1 1
2 2 1 0 1
3 3 1 1 0

Then (X, ∗, 0) is a BN -algebra, but not a Coxeter algebra, since (1 ∗ 1) ∗ 2 = 2 ̸=
1 ∗ (1 ∗ 2) = 0.

Proposition 2.27. If (X, ∗, 0) is a BN -algebra with the condition (D) if and only
if it is a Coxeter algebra.

Proof. For any x, y, z ∈ x,

(x ∗ y) ∗ z = x ∗ (z ∗ y) [(D)]

= x ∗ (y ∗ z) [Theorem 2.18(ii)]

Hence (X, ∗, 0) is a Coxeter algebra.
Conversely, assume that (X, ∗, 0) is a Coxeter algebra. By Theorem 2.15, it is

enough to show the condition (D). For any x, y, z ∈ X,

(x ∗ y) ∗ z = x ∗ (y ∗ z) [X: Coxeter algebra]

= x ∗ (z ∗ y) [Proposition 2.24(ii)]

This completes the proof. 2

C. B. Kim and H. S. Kim ([4]) introduced and investigated BM -algebras. A
BM -algebra is a non-empty set X with a constant 0 and a binary operation “*”
satisfying the following axioms:

(B2) x ∗ 0 = x

(BM) (z ∗ x) ∗ (z ∗ y) = y ∗ x

for any x, y, z ∈ X.

It is known that the concept of a BM -algebra is equivalent to the concept of a
0-commutative B-algebra (see [4]).

By Theorem 3.3 and Theorem 3.5 of [4], (X, ∗, 0) is a Coxeter algebra if and
only if (X, ∗, 0) is a BM -algebra with 0∗x = x for any x ∈ X. So we have following
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the result.

Corollary 2.28. (X, ∗, 0) is a BN -algebra with the condition (D) if and only if
(X, ∗, 0) is a BM -algebra with 0 ∗ x = x for any x ∈ X.

By applying Theorem 2.3, Theorem 2.12 and the results of [4] mentioned above,
we obtain the following relation:

The class of Coxeter algebras ⊂ the class of BM -algebras ⊂ the class of BN -algebras
⊂ the class of BF -algebras.

3. Quotient BN-algebras

In this section, we construct the quotient BN -algebra and investigate their
properties.

Definition 3.1. Let (X, ∗, 0) be a BN -algebra and let ∅ ̸= S ⊆ X. S is said to
be a subalgebra of X if x ∗ y ∈ S for any x, y ∈ S. S is said to be normal of X if
(x ∗ a) ∗ (y ∗ b) ∈ S, whenever x ∗ y, a ∗ b ∈ S.

Example 3.2. In Example 2.26, S := {0, 3} is a normal subset of X.

Theorem 3.3. Every normal subset S of a BN -algebra (X, ∗, 0) is a subalgebra of
X.

Proof. If x, y ∈ S, then x∗0, y ∗0 ∈ S. Since S is normal, x∗y = (x∗y)∗ (0∗0) ∈ S.
Thus S is a subalgebra of A. 2

Lemma 3.4. Let S be a normal subalgebra of a BN -algebra (X, ∗, 0). If x ∗ y ∈ S,
then y ∗ x ∈ S.

Proof. Let x∗y ∈ S. Since y∗y = 0 ∈ S and S is normal, y∗x = (y∗x)∗(y∗y) ∈ S. 2

We construct a quotient BN -algebra using the notion of normal subalgebra as
follows. Let (X, ∗, 0) be a BN -algebra and let S be a normal subalgebra ofX. Define
a relation ∼S on X by x ∼S y if and only if x ∗ y ∈ S, where x, y ∈ X. Then it is
easy to show that ∼S is an equivalence relation on X. Denote the equivalence class
containing x by [x]S , i.e., [x]S := {y ∈ X | x ∼S y} and let X/S := {[x]S | x ∈ X}.

Theorem 3.5. Let S be a normal subalgebra of a BN -algebra (X, ∗, 0). Then X/S
is a BN -algebra.

Proof. If we define [x]S ∗ [y]S = [x ∗ y]S , then the operation “ ∗ ” is well-defined,
since if x ∼S p and y ∼S q, then x ∗ p ∈ S and y ∗ q ∈ S implies (x ∗ y) ∗ (p ∗ q) ∈ S
by normality of S. So x ∗ y ∼S p ∗ q and so [x ∗ y]S = [p ∗ q]S . Note that
[0]S = {x ∈ X | x ∼S 0} = {x ∈ X | x ∗ 0 ∈ S} = {x ∈ X | x ∈ S} = S. Checking
remaining axioms is trivial and we omit the proof. 2

The BN -algebra X/S discussed in Theorem 3.5 is called the quotient BN -
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algebra of X by S.

Let (X, ∗, 0) and (Y, ∗, 0) be BN -algebras. A mapping ϕ : X −→ Y is called a
homomorphism fromX into Y if ϕ(x∗y) = ϕ(x)∗ϕ(y) for any x, y ∈ X. Observe that
ϕ(0X) = 0Y . Indeed, ϕ(0X) = ϕ(x∗x) = ϕ(x)∗ϕ(x) = 0Y . We denote by Kerϕ the
subset {x ∈ X | ϕ(x) = 0Y } of X. (It is called the kernel of the homomorphism ).
The proof of Theorem 3.6 follows from the Homomorphism Theorem for Algebras([6,
pp. 28-29]), and we omit the proof.

Theorem 3.6. Let S be a normal subalgebra of a BN -algebra X. Then the mapping
γ : X −→ X/S given by γ(x) := [x]S is an epimorphism of BN -algebras and
Kerγ = S.

Definition 3.7. A BN -algebra (X, ∗, 0) is said to be a BN1-algebra if it satisfies
the condition:

(BN1) x = (x ∗ y) ∗ y
for any x, y ∈ X.

Example 3.8. Let X := {0, 1, 2, 3, 4, 5, 6, 7} be a set as in Example 2.19. Then
(X, ∗, 0) is a BN1-algebra.

Proposition 3.9. If (X, ∗, 0) is a BN1-algebra, then it is a BG-algebra.

Proof. Let (X, ∗, 0) be a BN1-algebra. If we let y := x in (BN1), then x =
(x ∗ x) ∗ x = 0 ∗ x for any x ∈ A. Thus we obtain

(x ∗ y) ∗ (0 ∗ y) = (x ∗ y) ∗ y = x.

Hence (X, ∗, 0) is a BG-algebra. 2

Corollary 3.10. Let (X, ∗, 0) be a BN1-algebra. If x ∗ y = 0, then x = y.

Proof. Since x = 0 ∗ x for any x ∈ X by the proof of Proposition 3.9, we obtain
x = (x ∗ y) ∗ y = 0 ∗ y = y. 2

Theorem 3.11. Let ϕ : X −→ Y be a homomorphism from a BN -algebra (X, ∗, 0)
into a BN1-algebra (Y, ∗, 0). Then the kernel Kerϕ of ϕ is a normal subalgebra of
X.

Proof. Since 0X ∈ Kerϕ, Kerϕ ̸= ∅. If x, y ∈ Kerϕ, then

ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) = 0B ∗ 0B = 0B ,

i.e., x ∗ y ∈ Kerϕ. Hence Kerϕ is a subalgebra of X. Let x ∗ y, a ∗ b ∈ Kerϕ.
Then ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) = 0B and ϕ(a ∗ b) = ϕ(a) ∗ ϕ(b) = 0Y . Since Y is a
BN1-algebra, by Corollary 3.10, ϕ(x) = ϕ(y) and ϕ(a) = ϕ(b). Hence

ϕ((x ∗ a) ∗ (y ∗ b)) = ϕ(x ∗ a) ∗ ϕ(y ∗ b)
= (ϕ(x) ∗ ϕ(a)) ∗ (ϕ(y) ∗ ϕ(b))
= (ϕ(x) ∗ ϕ(a)) ∗ (ϕ(x) ∗ ϕ(a))
= 0Y .
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Thus (x ∗ a) ∗ (y ∗ b) ∈ Kerϕ. Hence Kerϕ is a normal subalgebra of X. 2

Corollary 3.12. Let ϕ : X −→ Y be a homomorphism from a BN -algebra (X, ∗, 0)
into a BN1-algebra (Y, ∗, 0). Then X/Kerϕ ≃ Imϕ. In particular, if ϕ is surjec-
tive, then X/Kerϕ ≃ Y .
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