On $B N$-algebras

Chang Bum Kim ${ }^{\dagger}$
Department of Mathematics, Kookmin University, Seoul, 136-702, Korea
e-mail: cbkim@kookmin.ac.kr
Hee Sik Kim*
Department of Mathematics, Hanyang University, Seoul, 133-791, Korea
e-mail: heekim@hanyang.ac.kr
Abstract. In this paper, we introduce a $B N$-algebra, and we prove that a $B N$-algebra is 0 -commutative, and an algebra X is a $B N$-algebra if and only if it is a 0 -commutative $B F$-algebra. And we introduce a quotient $B N$-algebra, and we investigate some relations between $B N$-algebras and several algebras.

1. Introduction

The notion of B-algebra was introduced by J. Neggers and H. S. Kim ([7]). They defined a B-algebra as an algebra $(X, *, 0)$ of type (2,0) (i.e., a non-empty set with a binary operation $*$ and a constant 0) satisfying the following axioms:
(B1) $x * x=0$,
(B2) $x * 0=x$,
(B) $(x * y) * z=x *[z *(0 * y)]$
for any $x, y, z \in X$.
Recently, C. B. Kim and H. S. Kim ([3]) defined a $B G$-algebra, which is a generalization of B-algebra. An algebra $(X, *, 0)$ of type (2,0) is called a $B G$-algebra if it satisfies $(B 1),(B 2)$, and
(BG) $x=(x * y) *(0 * y)$
for any $x, y \in X$. Also they introduced a $B M$-algebra. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B M$-algebra ([4]) if it satisfies (B2) and

[^0](BM) $(z * x) *(z * y)=y * x$
for any $x, y, z \in X$.
Y. B. Jun, E. H. Roh and H. S. Kim ([2]) introduced the notion of a $B H$-algebra which is a generalization of $B C K / B C I / B C H$-algebras. An algebra $(X, *, 0)$ of type $(2,0)$ is called a $B H$-algebra if it satisfies $(B 1),(B 2)$, and
(BH) $x * y=y * x=0$ implies $x=y$
for any $x, y \in X$.
In [12], A. Walendziak introduced $B F / B F_{1} / B F_{2}$-algebra. An algebra $(X, *, 0)$ of type $(2,0)$ is a $B F$-algebra if it satisfies $(B 1),(B 2)$ and
(BF) $0 *(x * y)=y * x$.
for any $x, y \in X$. A $B F$-algebra is called a $B F_{1}$-algebra (resp., a $B F_{2}$-algebra) if it satisfies $(B G)$ (resp., $(B H)$). In this paper, we define a $B N$-algebra and investigate some relations between $B N$-algebras and several algebras, i.e., B-algebras, $B M$-algebras, $B F$-algebras, Coxeter-algebras, etc..

2. $B N$-algebras

In this section, we define a $B N$-algebra and investigate some relations between $B N$-algebras and other algebras.

Definition 2.1. A $B N$-algebra is an algebra $(X, *, 0)$ of type (2,0) satisfying $(B 1),(B 2)$, and the following axiom:
$(\mathrm{BN})(x * y) * z=(0 * z) *(y * x)$
for any $x, y, z \in X$.
Example 2.2. Let $X:=\{0,1,2\}$ be a set. If we define a binary operation "*" on X as follows:

$*$	0	1	2
0	0	1	2
1	1	0	1
2	2	1	0

then $(X, *, 0)$ is a $B N$-algebra.
Theorem 2.3. If $(X, *, 0)$ is a $B N$-algebra, then $(X, *, 0)$ is a BF-algebra.

Proof. If we let $z:=0$ in $(B N)$, we obtain $x * y=0 *(y * x)$. Hence $(X, *, 0)$ is a $B F$-algebra.

Remark. The converse of Theorem 2.3 does not hold in general.
Example 2.4. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	2	1	3
1	1	0	1	2
2	2	2	0	2
3	3	1	1	0

Then $(X, *, 0)$ is a $B F$-algebra, but not a $B N$-algebra, since $(3 * 1) * 3=2 \neq$ $(0 * 3) *(1 * 3)=1$.

Theorem 2.5. If $(X, *, 0)$ is a $B N$-algebra, then
(i) $0 *(0 * x)=x$,
(ii) $y * x=(0 * x) *(0 * y)$,
(iii) $(0 * x) * y=(0 * y) * x$,
(iv) $x * y=0 \Longrightarrow y * x=0$,
(v) $0 * x=0 * y \Longrightarrow x=y$,
(vi) $(x * z) *(y * z)=(z * y) *(z * x)$,
for any $x, y, z \in X$.
Proof. (i). If we let $y:=0, z:=0$ in $(B N)$, then $(x * 0) * 0=(0 * 0) *(0 * x)$. By applying $(B 1)$ and $(B 2)$, we obtain $0 *(0 * x)=x$.
(ii). By $(B 2)$ and $(B N), y * x=(y * 0) * x=(0 * x) *(0 * y)$.
(iii). By applying $(B 2)$ and $(B N)$, we obtain $(0 * x) * y=(0 * y) * x$.
(iv). By Theorem 2.3, $0=0 * 0=0 *(x * y)=y * x$.
(v). If $0 * x=0 * y$, then by (i) we have $x=0 *(0 * x)=0 *(0 * y)=y$.
(vi). $(x * z) *(y * z)=(0 *(y * z)) *(z * x)=(z * y) *(z * x)$ by $(B N)$ and Theorem
2.3.

Definition 2.6. An algebra $(X, *, 0)$ is said to be 0 -commutative if $x *(0 * y)=$ $y *(0 * x)$ for all $x, y \in X$.
Theorem 2.7. If $(X, *, 0)$ is a $B N$-algebra, then it is 0 -commutative.
Proof. Let x and y be any elements of X. Then

$$
\begin{array}{rll}
x *(0 * y) & =[(0 *(0 * x)) *(0 * y)] & {[\text { Theorem } 2.5(\mathrm{i})]} \\
& =[0 *(0 * y)] *[(0 * x) * 0] & {[(\mathrm{BN})]} \\
& =y *(0 * x) . & {[\text { Theorem 2.5(i) and (B2)] }}
\end{array}
$$

Theorem 2.8. If $(X, *, 0)$ is a 0 -commutative BF-algebra, then it is a $B N$-algebra.

Proof. Let x, y, z be any elements of X. Then

$$
\left.\begin{array}{rlrl}
(0 * z) *(y * x) & =(0 * z) *(0 *(x * y)) & {[(\mathrm{BF})]} \\
& =(x * y) *(0 *(0 * z)) & {[0-c o m m u t a t i v e}
\end{array}\right]
$$

Hence $(X, *, 0)$ is a $B N$-algebra.
Using Theorem 2.3, Theorem 2.7 and Theorem 2.8, we obtain the following result.

Theorem 2.9. $(X, *, 0)$ is a 0 -commutative $B F$-algebra if and only if it is a $B N$ algebra.
Proposition $2.10([4])$. If $(X, *, 0)$ is a 0-commutative B-algebra, then

$$
(0 * x) *(0 * y)=y * x
$$

for any $x, y \in X$.
Proposition 2.11([11]). If $(X, *, 0)$ is a B-algebra, then

$$
0 *(x * y)=y * x
$$

for any $x, y \in X$.
Corollary 2.12. If $(X, *, 0)$ is a 0 -commutative B-algebra, then it is a $B N$-algebra.

Proof. It follows immediately from Theorem 2.9 and Proposition 2.11.
Remark. The converse of Corollary 2.12 does not hold in general.
Example 2.13. Let $X:=\{0,1,2\}$ be a set with the table given in Example 2.2. Then it is easy to show that $(X, *, 0)$ is a $B N$-algebra, but not a B-algebra, since $(1 * 1) * 2=2 \neq 1 *[2 *(0 * 1)]=0$.

The condition, 0 -commutativity, is very necessary for B-algebras to be $B N$ algebras. Consider the following example.
Example 2.14. Let $X:=\{0,1,2,3,4,5\}$ be a set with the following table:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	5	3	4
2	2	1	0	4	5	3
3	3	5	4	0	1	2
4	4	3	5	2	0	1
5	5	4	3	1	2	0

Then it is easy to show that $(X, *, 0)$ is a B-algebra, but it is not 0 -commutative, since $1 *(0 * 3)=1 * 3=5 \neq 3 *(0 * 1)=3 * 2=4$. Moreover, we know that $(X, *, 0)$ is not a $B N$-algebra, since $(2 * 3) * 5=1 \neq(0 * 5) *(3 * 2)=2$.

Every abelian group determines a $B N$-algebra. Consider the following theorem.

Theorem 2.15. Let $(X ; \circ, 0)$ be an abelian group. If we define $x * y:=x \circ$ $y^{-1}, \forall x, y \in X$, then $(X ; *, 0)$ is a $B N$-algebra.
Proof. We see that $x * x=x \circ x^{-1}=0$ and $x * 0=x \circ 0^{-1}=x \circ 0=x$. For any $x, y, z \in X$,

$$
\begin{aligned}
(x * y) * z & =\left(x \circ y^{-1}\right) \circ z^{-1} \\
& =z^{-1} \circ\left(x \circ y^{-1}\right) \\
& =z^{-1} \circ\left(y^{-1} \circ x\right) \\
& =z^{-1} \circ\left(x^{-1} \circ y\right)^{-1} \\
& =z^{-1} *\left(x^{-1} \circ y\right) \\
& =(0 * z) *\left(y \circ x^{-1}\right) \\
& =(0 * z) *(y * x) .
\end{aligned}
$$

Hence $(X, *, 0)$ is a $B N$-algebra.
Theorem 2.16. Let $(X, *, 0)$ be an algebra with $0 *(0 * x)=x$ for any $x \in X$. Then $(X, *, 0)$ is 0 -commutative if and only if $(0 * x) *(0 * y)=y * x$ for any $x, y \in X$.
Proof. If $(X, *, 0)$ is 0 -commutative, then

$$
\begin{aligned}
(0 * x) *(0 * y) & =y *(0 *(0 * x))[X: 0 \text {-commutative }] \\
& =y * x
\end{aligned}
$$

for any $x, y \in X$. Conversely, if $(0 * x) *(0 * y)=y * x$ for any $x, y \in X$, then

$$
\begin{aligned}
x *(0 * y) & =(0 *(0 * x)) *(0 * y) \\
& =y *(0 * x)
\end{aligned}
$$

proving the theorem.
Definition 2.17. An algebra $(X, *, 0)$ is said to have a condition (D) if $(x * y) * z=$ $x *(z * y)$ for any $x, y, z \in X$.

Theorem 2.18. If $(X, *, 0)$ is a $B N$-algebra with the condition (D), then
(i) $0 * x=x$,
(ii) $x * y=y * x$
for any $x, y \in X$.
Proof. (i). If we let $x:=0, z:=0$ in (D), then $0 * y=0 *(0 * y)=y$ by Theorem 2.5(i). (ii). $x * y=x *(0 * y)=y *(0 * x)=y * x$ by Theorem 2.7 and (i).

Example 2.19. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

Then $(X, *, 0)$ is a $B N$-algebra with the condition (D).
Theorem 2.20. If $(X, *, 0)$ is a $B N$-algebra with the condition (D), then it is a B-algebra.
Proof. Let x, y, z be any elements of X. Then

$$
\begin{array}{rlr}
x *(z *(0 * y)) & =x *(z * y) \quad[\text { Theorem 2.18(i) }] \\
& =(x * y) * z \quad[(D)]
\end{array}
$$

Hence $(X, *, 0)$ is a B-algebra.
Theorem 2.21. Let $(X, *, 0)$ be a $B N$-algebra with the condition (D), then $(X, *, 0)$ is an abelian group.
Proof. Since $(X, *, 0)$ is a $B N$-algebra, $x * x=0$ for any $x \in X$. We may regard x as its own inverse, i.e., $x^{-1}=x$. By applying (B2) and Theorem 2.18(i), we obtain $x * 0=0 * x=x$, i.e., 0 is the identity element for A. Since $(x * y) * z=x *(z * y)=$ $x *(y * z)$ by Theorem 2.18(ii), the associative law holds. Theorem 2.18(ii) shows that $(X, *, 0)$ is an abelian group.

Theorem 2.22. If $(X, *, 0)$ is a $B N$-algebra with the condition (D), then it is a BH-algebra.
Proof. Let $x * y=0$ and $y * x=0$. Then, by Theorem 2.18, we have $x=x * 0=$ $x *(y * x)=(x * x) * y=0 * y=y$. Hence $(X, *, 0)$ is a $B H$-algebra.

Definition 2.23([5]). A Coxeter algebra is a non-empty set X with a constant 0 and a binary operation " $*$ " satisfying the axioms $(B 1),(B 2)$, and $(A s)(x * y) * z=$ $x *(y * z)$ for any $x, y, z \in X$.

It is known that a Coxeter algebra is a special type of abelian groups (see [5]).
Proposition 2.24([5]). If $(X, *, 0)$ is a Coxeter algebra, then
(i) $0 * x=x$,
(ii) $x * y=y * x$
for any $x, y \in X$.

Proposition 2.25. Every Coxeter algebra is a $B N$-algebra.
Proof. Let $(X, *, 0)$ be a Coxeter algebra. Given $x, y, z \in X,(0 * z) *(y * x)=$ $(y * x) *(0 * z)=(x * y) * z$, by Proposition 2.24. Hence $(X, *, 0)$ is a $B N$-algebra.

Remark. The converse of Theorem 2.25 does not hold in general.
Example 2.26. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then $(X, *, 0)$ is a $B N$-algebra, but not a Coxeter algebra, since $(1 * 1) * 2=2 \neq$ $1 *(1 * 2)=0$.

Proposition 2.27. If $(X, *, 0)$ is a $B N$-algebra with the condition (D) if and only if it is a Coxeter algebra.
Proof. For any $x, y, z \in x$,

$$
\begin{aligned}
(x * y) * z & =x *(z * y) \quad[(D)] \\
& =x *(y * z)[\text { Theorem 2.18(ii) }]
\end{aligned}
$$

Hence $(X, *, 0)$ is a Coxeter algebra.
Conversely, assume that $(X, *, 0)$ is a Coxeter algebra. By Theorem 2.15, it is enough to show the condition (D). For any $x, y, z \in X$,

$$
\begin{aligned}
(x * y) * z & =x *(y * z) \quad[X: \text { Coxeter algebra }] \\
& =x *(z * y)[\text { Proposition } 2.24(\mathrm{ii})]
\end{aligned}
$$

This completes the proof.
C. B. Kim and H. S. Kim ([4]) introduced and investigated $B M$-algebras. A $B M$-algebra is a non-empty set X with a constant 0 and a binary operation"*" satisfying the following axioms:
(B2) $x * 0=x$
(BM) $(z * x) *(z * y)=y * x$
for any $x, y, z \in X$.
It is known that the concept of a $B M$-algebra is equivalent to the concept of a 0 -commutative B-algebra (see [4]).

By Theorem 3.3 and Theorem 3.5 of [4], $(X, *, 0)$ is a Coxeter algebra if and only if $(X, *, 0)$ is a $B M$-algebra with $0 * x=x$ for any $x \in X$. So we have following
the result.
Corollary 2.28. $(X, *, 0)$ is a $B N$-algebra with the condition (D) if and only if $(X, *, 0)$ is a $B M$-algebra with $0 * x=x$ for any $x \in X$.

By applying Theorem 2.3, Theorem 2.12 and the results of [4] mentioned above, we obtain the following relation:

The class of Coxeter algebras \subset the class of $B M$-algebras \subset the class of $B N$-algebras \subset the class of BF-algebras.

3. Quotient $B N$-algebras

In this section, we construct the quotient $B N$-algebra and investigate their properties.

Definition 3.1. Let $(X, *, 0)$ be a $B N$-algebra and let $\emptyset \neq S \subseteq X . S$ is said to be a subalgebra of X if $x * y \in S$ for any $x, y \in S . S$ is said to be normal of X if $(x * a) *(y * b) \in S$, whenever $x * y, a * b \in S$.

Example 3.2. In Example 2.26, $S:=\{0,3\}$ is a normal subset of X.
Theorem 3.3. Every normal subset S of a $B N$-algebra $(X, *, 0)$ is a subalgebra of X.
Proof. If $x, y \in S$, then $x * 0, y * 0 \in S$. Since S is normal, $x * y=(x * y) *(0 * 0) \in S$. Thus S is a subalgebra of A.

Lemma 3.4. Let S be a normal subalgebra of a $B N$-algebra $(X, *, 0)$. If $x * y \in S$, then $y * x \in S$.
Proof. Let $x * y \in S$. Since $y * y=0 \in S$ and S is normal, $y * x=(y * x) *(y * y) \in S$.
We construct a quotient $B N$-algebra using the notion of normal subalgebra as follows. Let $(X, *, 0)$ be a $B N$-algebra and let S be a normal subalgebra of X. Define a relation \sim_{S} on X by $x \sim_{S} y$ if and only if $x * y \in S$, where $x, y \in X$. Then it is easy to show that \sim_{S} is an equivalence relation on X. Denote the equivalence class containing x by $[x]_{S}$, i.e., $[x]_{S}:=\left\{y \in X \mid x \sim_{S} y\right\}$ and let $X / S:=\left\{[x]_{S} \mid x \in X\right\}$.

Theorem 3.5. Let S be a normal subalgebra of a $B N$-algebra $(X, *, 0)$. Then X / S is a BN-algebra.
Proof. If we define $[x]_{S} *[y]_{S}=[x * y]_{S}$, then the operation "*" is well-defined, since if $x \sim_{S} p$ and $y \sim_{S} q$, then $x * p \in S$ and $y * q \in S$ implies $(x * y) *(p * q) \in S$ by normality of S. So $x * y \sim_{S} p * q$ and so $[x * y]_{S}=[p * q]_{S}$. Note that $[0]_{S}=\left\{x \in X \mid x \sim_{S} 0\right\}=\{x \in X \mid x * 0 \in S\}=\{x \in X \mid x \in S\}=S$. Checking remaining axioms is trivial and we omit the proof.

The $B N$-algebra X / S discussed in Theorem 3.5 is called the quotient $B N$ -
algebra of X by S.
Let $(X, *, 0)$ and $(Y, *, 0)$ be $B N$-algebras. A mapping $\phi: X \longrightarrow Y$ is called a homomorphism from X into Y if $\phi(x * y)=\phi(x) * \phi(y)$ for any $x, y \in X$. Observe that $\phi\left(0_{X}\right)=0_{Y}$. Indeed, $\phi\left(0_{X}\right)=\phi(x * x)=\phi(x) * \phi(x)=0_{Y}$. We denote by Ker ϕ the subset $\left\{x \in X \mid \phi(x)=0_{Y}\right\}$ of X. (It is called the kernel of the homomorphism). The proof of Theorem 3.6 follows from the Homomorphism Theorem for Algebras($[6$, pp. 28-29]), and we omit the proof.

Theorem 3.6. Let S be a normal subalgebra of a $B N$-algebra X. Then the mapping $\gamma: X \longrightarrow X / S$ given by $\gamma(x):=[x]_{S}$ is an epimorphism of $B N$-algebras and $\operatorname{Ker} \gamma=S$.

Definition 3.7. A $B N$-algebra $(X, *, 0)$ is said to be a $B N_{1}$-algebra if it satisfies the condition:

$$
\left(B N_{1}\right) x=(x * y) * y
$$

for any $x, y \in X$.
Example 3.8. Let $X:=\{0,1,2,3,4,5,6,7\}$ be a set as in Example 2.19. Then $(X, *, 0)$ is a $B N_{1}$-algebra.

Proposition 3.9. If $(X, *, 0)$ is a $B N_{1}$-algebra, then it is a $B G$-algebra.
Proof. Let $(X, *, 0)$ be a $B N_{1}$-algebra. If we let $y:=x$ in $\left(B N_{1}\right)$, then $x=$ $(x * x) * x=0 * x$ for any $x \in A$. Thus we obtain

$$
(x * y) *(0 * y)=(x * y) * y=x .
$$

Hence $(X, *, 0)$ is a $B G$-algebra.
Corollary 3.10. Let $(X, *, 0)$ be a $B N_{1}$-algebra. If $x * y=0$, then $x=y$.
Proof. Since $x=0 * x$ for any $x \in X$ by the proof of Proposition 3.9, we obtain $x=(x * y) * y=0 * y=y$.

Theorem 3.11. Let $\phi: X \longrightarrow Y$ be a homomorphism from a $B N$-algebra $(X, *, 0)$ into a $B N_{1}$-algebra $(Y, *, 0)$. Then the kernel Ker ϕ of ϕ is a normal subalgebra of X.
Proof. Since $0_{X} \in \operatorname{Ker} \phi, \operatorname{Ker} \phi \neq \emptyset$. If $x, y \in \operatorname{Ker} \phi$, then

$$
\phi(x * y)=\phi(x) * \phi(y)=0_{B} * 0_{B}=0_{B},
$$

i.e., $x * y \in \operatorname{Ker} \phi$. Hence $\operatorname{Ker} \phi$ is a subalgebra of X. Let $x * y, a * b \in \operatorname{Ker} \phi$. Then $\phi(x * y)=\phi(x) * \phi(y)=0_{B}$ and $\phi(a * b)=\phi(a) * \phi(b)=0_{Y}$. Since Y is a $B N_{1}$-algebra, by Corollary 3.10, $\phi(x)=\phi(y)$ and $\phi(a)=\phi(b)$. Hence

$$
\begin{aligned}
\phi((x * a) *(y * b)) & =\phi(x * a) * \phi(y * b) \\
& =(\phi(x) * \phi(a)) *(\phi(y) * \phi(b)) \\
& =(\phi(x) * \phi(a)) *(\phi(x) * \phi(a)) \\
& =0_{Y} .
\end{aligned}
$$

Thus $(x * a) *(y * b) \in \operatorname{Ker} \phi$. Hence $\operatorname{Ker} \phi$ is a normal subalgebra of X.
Corollary 3.12. Let $\phi: X \longrightarrow Y$ be a homomorphism from a $B N$-algebra $(X, *, 0)$ into a $B N_{1}$-algebra $(Y, *, 0)$. Then $X / \operatorname{Ker} \phi \simeq \operatorname{Im} \phi$. In particular, if ϕ is surjective, then $X / K e r \phi \simeq Y$.

Acknowledgements The authors are grateful to the referee's valuable suggestions and help.

References

[1] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and related systems, 8(2001), 1-6.
[2] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebra, Sci. Math., 1(1998), 347-354.
[3] C. B. Kim and H. S. Kim, On BG-algebras, Demo. Math., 41(2008), 497-505.
[4] C. B. Kim and H. S. Kim, On BM-algebras, Sci. Math. Japonicae 63(2006), 421-427.
[5] H. S. Kim, Y. H. Kim and J. Neggers, Coxeters and pre-Coxeter algebras in Smarandache setting, Honam Math. J., 26(2004), 251-272.
[6] R. Mckenzie, G. F. Mcnulty and W. Taylor, Algebras, Lattices, Varieties, Vol. 1, Wadsworth and Brooks/Cole, Monterey, California, 1987.
[7] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik, 54(2002), 21-29.
[8] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for Balgebras, Intern. Math. J., 2(2002), 207-214.
[9] J. Neggers and H. S. Kim, On β-algebras, Math. Slovaca, 52(2002), 517-530.
[10] A. Walendziak, A note on normal subalgebras in B-algebras, Sci. Math. Japonicae, Online e-2005, (2005),49-53.
[11] A. Walendziak, Some axiomatizations of B-algebras, Math Slovaca, 56(2006), 301306.
[12] A. Walendziak, On BF-algebras, Math Slovaca, 57(2007), 119-128.
[13] X. Zhang and R. Ye, BZ-algebra and group, J. Math. Phy. Sci., 29(1995), 223-233.

[^0]: * Corresponding Author.

 Received November 2, 2010; accepted July 30, 2012.
 2010 Mathematics Subject Classification: 06F35.
 Key words and phrases: $B N$-algebra, B-algebra, $B F$-algebra, Quotient $B N$-algebra, $B N_{1}$ algebra.
 \dagger This paper was supported by Kookmin University Research Fund, 2011-2012.

