DOI QR코드

DOI QR Code

Development of an Optical Tissue Clearing Laser Probe System

  • Yeo, Changmin (Training Management Team, Medical Device Information & Technology Assistance Center) ;
  • Kang, Heesung (Department of Biomedical Engineering, Yonsei University) ;
  • Bae, Yunjin (Department of Biomedical Engineering, Yonsei University) ;
  • Park, Jihoon (Department of Biomedical Engineering, Yonsei University) ;
  • Nelson, J. Stuart (Beckman Laser Institute, University of California) ;
  • Lee, Kyoung-Joung (Department of Biomedical Engineering, Yonsei University) ;
  • Jung, Byungjo (Department of Biomedical Engineering, Yonsei University)
  • Received : 2013.04.12
  • Accepted : 2013.08.06
  • Published : 2013.08.25

Abstract

Although low-level laser therapy (LLLT) has been a valuable therapeutic technology in the clinic, its efficacy may be reduced in deep tissue layers due to strong light scattering which limits the photon density. In order to enhance the photon density in deep tissue layers, this study developed an optical tissue clearing (OTC) laser probe (OTCLP) system which can utilize four different OTC methods: 1) tissue temperature control from 40 to $10^{\circ}C$; 2) laser pulse frequency from 5 to 30 Hz; 3) glycerol injection at a local region; and 4) a combination of the aforementioned three methods. The efficacy of the OTC methods was evaluated and compared by investigating laser beam profiles in ex-vivo porcine skin samples. Results demonstrated that total (peak) intensity at full width at half maximum of laser beam profile when compared to control data was increased: 1) 1.21(1.39)-fold at $10^{\circ}C$; 2) 1.22 (1.49)-fold at a laser pulse frequency of 5 Hz; 3) 1.64 (2.41)-fold with 95% glycerol injection; 4) 1.86 (3.4)-fold with the combination method. In conclusion, the OTCLP system successfully improved the laser photon density in deep tissue layers and may be utilized as a useful tool in LLLT by increasing laser photon density.

Keywords

References

  1. L. Carroll and T. R. Humphreys, "LASER-tissue interactions," Clin. Dermatol. 24, 2-7 (2006). https://doi.org/10.1016/j.clindermatol.2005.10.019
  2. R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1981). https://doi.org/10.1111/1523-1747.ep12479191
  3. J. Yoon, T. Son, E. H. Choi, B. Choi, J. S. Nelson, and B. Jung, "Enhancement of optical skin clearing efficacy using a microneedle roller," J. Biomed. Opt. 13, 021103 (2008). https://doi.org/10.1117/1.2907483
  4. H. Kang, T. Son, J. Yoon, K. Kwon, J. S. Nelson, and B. Jung, "Evaluation of laser beam profile in soft tissue due to compression, glycerol, and micro-needling," Lasers Surg. Med. 40, 570-575 (2008). https://doi.org/10.1002/lsm.20664
  5. J. Yoon, D. Park, T. Son, J. Seo, J. S. Nelson, and B. Jung, "A physical method to enhance transdermal delivery of a tissue optical clearing agent: combination of microneedling and sonophoresis," Lasers Surg. Med. 42, 412-417 (2010). https://doi.org/10.1002/lsm.20930
  6. C. Yeo, T. Son, J. Park, Y. H. Lee, K. Kwon, J. S. Nelson, and B. Jung, "Development of compression-controlled low-level laser probe system: towards clinical application," Lasers Med. Sci. 25, 699-704 (2010). https://doi.org/10.1007/s10103-010-0779-8
  7. R. N. Lewis, D. A. Mannock, R. N. McElhaney, P. T. Wong, and H. H. Mantsch, "Physical properties of glycosyldiacyglycerols: an infrared spectroscopic study of the gel-phase polymorphism of 1, 2-di-O-acyl-3-O-($\beta$-D-glucopyranosyl)- sn-glycerols," Biochemistry 29, 8933-8943 (1990). https://doi.org/10.1021/bi00490a008
  8. H. H. Mantsch, C. Madec, R. N. Lewis, and R. N. McElhaney, "Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing dl-methyl anteisobranched fatty acids. 2. An infrared spectroscopy study," Biochemistry 26, 4045-4049 (1987). https://doi.org/10.1021/bi00387a045
  9. J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Effect of temperature on the optical properties of ex vivo human dermis and subdermis," Phys. Med. Biol. 43, 2479-2489 (1998). https://doi.org/10.1088/0031-9155/43/9/004
  10. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomed. Opt. 1, 342-355 (1996). https://doi.org/10.1117/12.239905
  11. S. J. Yeh, O. S. Khalil, C. F. Hanna, S. Kantor, X. Wu, T. W. Jeng, and R. A. Bolt, "Temperature dependence of optical properties of in-vivo human skin," Proc. SPIE 4250, 455-461 (2001).
  12. O. S. Khalil, S. J. Yeh, M. G. Lowery, X. Wu, C. F. Hanna, S. Kantor, T. W. Jeng, J. S. Kanger, R. A. Bolt, and F. F. de Mul, "Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin," J. Biomed. Opt. 8, 191-205 (2003). https://doi.org/10.1117/1.1559997
  13. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. H. Mavlutov, and A. A. Mishin, "Light propagation in tissues with controlled optical properties," J. Biomed. Opt. 2, 401-417 (1997). https://doi.org/10.1117/12.281502
  14. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander III, and A. J. Welch, "Use of an agent to reduce scattering in skin," Lasers Surg. Med. 24, 133-141 (1999). https://doi.org/10.1002/(SICI)1096-9101(1999)24:2<133::AID-LSM9>3.0.CO;2-X
  15. J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, "Collagen solubility correlates with skin optical clearing," J. Biomed. Opt. 11, 040501 (2006). https://doi.org/10.1117/1.2220527
  16. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, "Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity," J. Biomed. Opt. 1, 200-211 (1996). https://doi.org/10.1117/12.231370
  17. E. A. Genina, A. N. Bashkatov, and V. V. Tuchin, "Tissue optical immersion clearing," Expert Rev. Med. Devices 7, 825-842 (2010). https://doi.org/10.1586/erd.10.50
  18. C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, K. R. Diller, and A. J. Welch, "Dehydration mechanism of optical clearing in tissue," J. Biomed. Opt. 11, 041117 (2006). https://doi.org/10.1117/1.2343208
  19. T. Yu, X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, "Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing," J. Biomed. Opt. 16, 095002 (2011). https://doi.org/10.1117/1.3621515
  20. A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, "Reversible dissociation of collagen in tissues," J. Invest. Dermatol. 121, 1332-1335 (2003). https://doi.org/10.1046/j.1523-1747.2003.12634.x
  21. M. G. Ghosn, N. Sudheendran, M. Wendt, A. Glasser, V. V. Tuchin, and K. V. Larin, "Monitoring of glucose permeability in monkey skin in vivo using optical coherence tomography," J. Biophotonics 3, 25-33 (2010).
  22. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, and D. Zhu, "In vivo skin optical clearing by glycerol solutions: mechanism," J. Biophotonics 3, 44-52 (2010).
  23. V. V. Tuchin, "Optical clearing of tissues and blood using the immersion method," J. Phys. D: Appl. Phys. 38, 2497-2518 (2005). https://doi.org/10.1088/0022-3727/38/15/001
  24. V. V. Tuchin, "A clear vision for laser diagnostics," IEEE J. Select. Topics Quantum Electron. 13, 1621-1628 (2007). https://doi.org/10.1109/JSTQE.2007.911313
  25. C. Liu, Z. Zhi, V. V. Tuchin, Q. Luo, and D. Zhu, "Enhancement of skin optical clearing efficacy using photoirradiation," Lasers Surg. Med. 42, 132-140 (2010). https://doi.org/10.1002/lsm.20900
  26. J. T. Hashmi, Y. Y. Huang, S. K. Sharma, D. B. Kurup, L. D. Taboada, J. D. Carroll, and M. R. Hamblin, "Effect of pulsing in low-level light therapy," Lasers Surg. Med. 42, 450-466 (2010). https://doi.org/10.1002/lsm.20950
  27. D. Barolet, "Light-emitting diodes (LEDs) in dermatology," Semin. Cutan. Med. Surg. 27, 227-238 (2008). https://doi.org/10.1016/j.sder.2008.08.003
  28. R. M. Lavker, G. Dong, P. S. Zheng, and G. F. Murphy, "Hairless micropig skin a novel model for studies of cutaneous biology," Am. J. Pathol. 138, 687-697 (1991).
  29. N. J. Vardaxis, T. A. Brans, M. E. Boon, R. W. Kreis, and L. M. Marres, "Confocal laser scanning microscopy of porcine skin: Implications for human wound healing studies," J. Anat. 190, 601-611 (1997). https://doi.org/10.1046/j.1469-7580.1997.19040601.x
  30. E. V. Ross, G. S. Naseef, J. R. Mckinlay, D. J. Barnette, M. Skrobal, J. Grevelink, and R. R. Anderson, "Comparison of carbon dioxide laser, erbium:YAG laser, dermabrasion, and dermatome: a study of thermal damage, wound contraction, and wound healing in a live pig model: Implications for skin resurfacing," J. Am. Acad. Dermatol. 42, 92-105 (2000). https://doi.org/10.1016/S0190-9622(00)90016-1
  31. S. L. Jacques and S. A. Prahl, "Modeling optical and thermal distributions in tissue during laser irradiation," Lasers Surg. Med. 6, 494-503 (1987). https://doi.org/10.1002/lsm.1900060604
  32. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, "Two integrating spheres with an intervening scattering sample," J. Opt. Soc. Am. A 9, 621-631 (1992). https://doi.org/10.1364/JOSAA.9.000621
  33. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenberg, and M. J. C. van Gemert, "Doubleintegrating- sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993). https://doi.org/10.1364/AO.32.000399
  34. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). https://doi.org/10.1109/3.64354
  35. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993). https://doi.org/10.1364/AO.32.000559
  36. A. J. Welch and M. J. C. van Gemert, Optical-thermal Response of Laser Irradiated Tissue (Plenum Press, New York, USA, 1995).
  37. Z. Deng, C. Liu, W. Tao, and D. Zhu, "Improvement of skin optical clearing efficacy by topical treatment of glycerol at different temperatures," J. Phys. 277, 012007 (2011).
  38. C. G. Rylander, T. E. Milner, S. A. Baranov, and J. S. Nelson, "Mechanical tissue optical clearing devices: enhancement of light penetration in ex vivo porcine skin and adipose tissue," Lasers Surg. Med. 40, 688-694 (2008). https://doi.org/10.1002/lsm.20718
  39. C. Drew, T. E. Milner, and C. G. Rylander, "Mechanical tissue optical clearing devices: evaluation of enhanced light penetration in skin using optical coherence tomography," J. Biomed. Opt. 14, 064019 (2009). https://doi.org/10.1117/1.3268441
  40. A. Izquierdo-Román, W. C. Vogt, L. Hyacinth, and C. G. Rylander, "Mechanical tissue optical clearing technique increases imaging resolution and contrast through ex vivo porcine skin," Lasers Surg. Med. 43, 814-823 (2011). https://doi.org/10.1002/lsm.21105
  41. M. Y. Kirillin, P. D. Agrba, and V. A. Kamensky, "In vivo study of the effect of mechanical compression on formation of OCT images of human skin," J. Biophotonics 3, 752-758 (2010). https://doi.org/10.1002/jbio.201000063

Cited by

  1. Optical clearing based cellular-level 3D visualization of intact lymph node cortex vol.6, pp.10, 2015, https://doi.org/10.1364/BOE.6.004154
  2. Low Temperature-Mediated Enhancement of Photoacoustic Imaging Depth vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22898-2