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요  약  본 논문에서는 실제 값과 같은 데이터의 불확실성과 유사성을 측정 할 수 있는 퍼지 엔트로피와 유사성 
측정이 소개되고 있다. 퍼지 엔트로피와 유사성 측정의 디자인이 설명하고 입증했다. 획득 수단은 연산 프로세스에 

적용되고 논의되었다. 이러한 의사 결정과 퍼지 게임 이론과 같은 데이터 정량화 결과의 연장도 논의되었다.

Abstract  In this paper, fuzzy entropy and similarity measure to measure the uncertainty and similarity of 
data as real value were introduced. Design of fuzzy entropy and similarity measure were illustrated and 
proved. Obtained measures were applied to the calculating process and discussed. Extension of data 
quantification results such as decision making and fuzzy game theory were also discussed.
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1. Introduction

Transform of heuristic data to numeric value is one 

of interesting research topic, in which heuristic data 

vagueness is changed to definite number. Studies on 

quantifying the uncertainty has been debated between 

fuzzy set theory and probability [1], however 

coexistence seemed obvious due to two approaches are 

complementary rather than competitive. With the 

obtained research result can give the advantage for 

dealing with system management including reliable 

data selection, pattern recognition or even fuzzy game 

theoretic problem. Design of fuzzy entropy for 

calculation of uncertainty has been studied by 

numerous researchers [2-4]. Most of results were 

concentrated in the designing of fuzzy entropies [2,3], 

and some parts of them also showed the implicit results 

of fuzzy entropies [2]. Hence, to apply real data explicit 

fuzzy entropy has to be needed. In our previous results, 

fuzzy entropies based on the distance measure has been 

reported [5,6]. With those designed fuzzy entropies 

reliable data selection problem has been solved [7]. 

Counter meaning of fuzzy entropy with respect to 

fixed data has been considered as the similarity 

measure and in our previous results [5]. Relation 

between fuzzy entropy and similarity measure has also 

studied [7]. In result [5], counter meaning of similarity 

measure was defined by dissimilarity measure, in 

which dissimilarity measure was derived through 

similarity and vise versa. Those relations give us the 

result that two measures can be obtained through 

counter measure designing. Obtained similarity 

measures were also designed with the distance 

measure, especially well-known Hamming distance 

measure. Hence, these data analysis make possible to 

manage the system optimization or design the efficient 
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system management.

Fuzzy entropy and similarity measure are introduced 

to describe the uncertainty and certainty of data, hence 

data analysis or quantification to the decision theory 

and fuzzy game theory has been followed. In next 

chapter, fuzzy entropy and similarity results are 

introduced and discussed. With application example 

data quantification results from fuzzy entropy and 

similarity are verified. Applications to decision theory 

and fuzzy game theory are shown in Chapter 3. Finally, 

conclusions are followed in Chapter 4.

2. Fuzzy Entropy and Similarity 

      Measure

Liu’s definition of fuzzy entropy is illustrated in the 

Definition 2.1, which illustrates the four properties of 

fuzzy entropy definition [2].

Definition 2.1 For ∀  ∈   and ∀  ∈ , 

fuzzy entropy has following four 

properties

(E1)   = 0, ∀  ∈ 

(E2)    = ∈

(E3)     ≤ , for any sharpening   of 

(E4)   =  , ∀  ∈ 

where   is the fuzzy set in which the value of 

the membership function is 1/2.   is fuzzy set and 

  is ordinary set.

Next, similarity measure between two sets is 

defined in Definition 2.2 [2]. On the contrary the 

properties of Definition 2.1 similarity measure shows 

that the degree of closeness between two sets 

containing fuzzy sets or ordinary sets.

Definition 2.2 For ∀A, B ∈   and ∀D ∈ 

, similarity measure has following 

four properties

(S1) s(A,B) = s(B, A), ∀A, B ∈   

(S2) s(D,  ) = 0, ∀D ∈ 

(S3) s(C, C) = ∈s(A,B),  ∀C ∈ 

(S4) ∀A, B, C ∈ ,  if A⊂B⊂C, then s(A,B) 

≥ s(A,C) and s(B,C) ≥ s(A,C),

  and   denote fuzzy set and ordinary set, 

respectively. 

2.1 Illustrations of Fuzzy Entropy and 

    Similarity measure

There are many fuzzy entropy results satisfying 

Definition 2.1, following entropies can be found in our 

previous results [5, 6]. Entropy of fuzzy data set with 

respect to the ordinary set can be designed using 

distance measure. Our previous results are followed as 

follows:

e(,   ) = d(∩  ,  )+d(∪  ,  )-1

e(,   ) = d(∩ 
 ,  )+d(∪ 

 ,  )

e(,   ) = 1- d(∩  ,  )-d(∪  ,  )

  

∩  and ∪  are expressed the minimum and 

maximum value, expressions are commonly used in 

fuzzy set theory. Hence, (∩)(x) = min(A(x), B(x)) 

and (∪)(x) = max(A(x),B(x)), respectively. 

The distance is defined by d(∩  ) = 


  



|

  -  |.    represents the crisp set “near” 

to the fuzzy set .    can be utilized by various 

variable as 0 ≤near≤1. For example, the value of crisp 

set    has one when    ≥ 0.5, and is zero 

otherwise. Above fuzzy entropies are represent the 

degree of uncertainty between fuzzy set and 

corresponding deterministic ordinary set   .  Next, 

similarity measures between two data sets are also 

followed. 

s(, ) = d(∩B,  ) + d(∪, )

s(, ) = 1- d(∩ ,  )-d(∪
 ,  )

s(, ) = 2-d(∩),  )-d(∪,  )
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Equations of fuzzy entropy and similarity can be 

also explained by graphical point of view. Fuzzy 

entropy means the degree of uncertainty or the 

dissimilarity between two data sets, fuzzy set and 

corresponding ordinary set generally. Hence, it can be 

designed through many ways satisfying Definition 2.1. 

Similarity measure represents the degree of similarity 

between all kinds of data sets. Fuzzy entropy and 

similarity can be explained by graphical illustration in 

Fig. 1. From Fig. 1 shaded area represent the common 

information of two fuzzy sets with membership 

functions. Hence, regions C and D satisfy the definition 

of similarity measure. Except region of C and D satisfy 

the dissimilarity between two data sets. Therefore, it is 

denoted by fuzzy entropy or dissimilarity measure. By 

Fig. 1 the relation between similarity and dissimilarity 

has been emphasized in our previous result [5].

Total information between fuzzy sets C and D 

satisfies following relation naturally. Liu insisted that 

the entropy can be generated by similarity measure and 

distance measure, those are denoted by e<s> and 

e<d>[2]. With the property of   = 1-, we constructed 

the similarity measure with distance measure   

previously. In Liu’s result +=1,   means the 

dissimilarity measure, and it is natural to obtain 

following result.

D(, ) = d(, ∩) + d(, ∩) = 1-s(, )

Therefore similarity measure 

<> = 1- d(,∩) - d(, ∩)

is satisfied by = 1-.

The relation between similarity measure and 

dissimilarity measure can be derived as follows

D(,) + (,) = 1.           (1)

By the comparison with (1) and Fig. 1 it is clear that  

is represented by graphical summation of C and D. 

Fig 1. Gaussian type two membership functions

In which the total information of two fuzzy set 

membership functions are represented by the summation 

of results similarity and dissimilarity measure. 

Non-convex fuzzy sets are uncommon for the fuzzy set 

theory. However, non-convex fuzzy membership 

functions same results were also obtained [8].   

2.2 Fuzzy Entropy and Similarity Measure 

Application

Calculation of uncertainty and certainty for data can 

be applied to the various fields such as data 

classification, pattern recognition. Next examples show 

the reliable data selection problem and calculation of 

similarity measure between crisp data.    Consider 65 

students markings of one subject. Its marking is 

distributed by Gaussian distribution [7]. 5 students are 

chosen randomly two times. 5 students’ markings are 

50, 52, 55, 57, and 59 points for first trial, whereas, 12, 

46, 53, 55, and 91 points are second trial. Among two 

trials it seems clear that which one represents middle 

level or average level students by heuristic approach. 

However two data sets seemed unclear by calculation 

of fuzzy entropy even more numerical calculation of 

each average. This discrepancy can be overcome 

through application of similarity measure calculation 

[7]. Mean of 65 students is 52.7. Table 1 represent that 

the second sample mean is close to the total mean 

value, however the first one is nearer to the 

membership degree in the view of membership 

average. Hence, it is hard to determine which one is 

reliable data for average level student.

A fuzzy entropy can be design as follows:

(,   ) = 2(, ∩  ) + 2(  , ∩

  )                                       (2)
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Data Information

Sample Membership   value
Fuzzy   
entropy

Trial 1

50 0.983

0.0656
52 0.999
55 0.987
57 0.957
59 0.910

Average 54.6 0.980 0.0656

Trial 2

12 0.019

0.0656
46 0.899
53 1.000
55 0.987
91 0.031

Average 51.4 0.590 0.0656

Table 1. Sample, Membership value, and Fuzzy entropy

for selected 5 data
Data Information

Sample Similarity measure
Fig.2(a) 50, 52, 55, 57, 59 0.9832
Fig.2(b) 12, 46, 53, 55, 91 0.5872

Table 2. Sample, Similarity measure

The average level student’s points are between 37 

and 71, i.e. =1 when 37≤≤71, =0 

otherwise. In the view of fuzzy entropy computation, 

both cases are calculated for the problem of how much 

they are in the average level. 

Computation results say that 

(, ) = 2(,∩)+2( , ∩)

          = 

(|1-0.987| + |1-0.999| + [1-0.987| + 

|1-0.957| + |1-0.91|]

          = 0.0656.

In the above, (∩) has to be deleted because 

of distance between same points. Similarly, trial 2 

shows that 

(, ) = 2(,∩)+2( , ∩)

           = 

(|-.019-0|+|0.031-0|)

             +

(|1-0.899|+|1-1|+|1-0.987|)

           = 0.0656.

Hence, the fuzzy entropy results indicate that two 

trials have same degree of uncertainty. Furthermore, 

they show good certainty because of small entropy 

value. However, their data points are not proper to 

represent middle level. The reason for the same fuzzy 

entropy values of two trials is originated from the 

property of complementary, that is () = (), ∀

∈. This drawback was overcome through 
similarity measure [7].

With the results, similarities are calculated with 

designed similarity measure by 0.9832 and 0.5872, 

respectively. The first trial has the higher similarity 

value than the second, hence it can be determined that 

the result is the nearest average level 5 students with 

only similarity measure. From this decision, with only 

similarity measure provides which trial is the most 

reliable data selection for this problem. To obtain same 

result fuzzy entropy calculation is needed more 

statistical information. Whereas compared to those 

results of fuzzy entropy, similarity measure has explicit 

advantage for reliable data selecting. Similarity 

computation of single data with respect to the data set 

is also carried out by the similarity measure design [9]. 

Similarity measure design between single data and 

data set were proposed by Chen et al. [10]. They had 

designed the similarity measure with fuzzy number and 

related knowledge in fuzzy set theory. However, 

similarity measure could be designed only for 

triangular or trapezoidal fuzzy membership function, if 

fuzzy number method is used [10].

)1;3.0,3.0,3.0,3.0()0.1;2.0,2.0,2.0,2.0(
~~
== BA

     Fig. 2. Set 7 of Fig. 10 in [10]
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Similarity Computation

Lee[9] Chen and Chen
Set1 0.839 0.8357
Set2 1 1
Set3 0.426 0.42
Set4 0.344 0.49
Set5 0.871 0.8
Set6 1 1
Set7 0 0.9
Set8 0.476 0.54
Set9 0.516 0.81
Set10 0.672 0.9
Set11 0.512 0.72
Set12 0.618 0.78

Table 3. Comparison with the results of Chen and Chen

Above example shows the similarity measure 

computation difference between based on fuzzy number 

and distance measure. Fig. 2 is expressed clearly as the 

different singleton pair, so it is questionable whether 

the degree of similarity between two single data 

satisfies 0.9 except when matching the fuzzy 

membership functions pair of Sets 2 and 6. It is 

commonly required that the similarity between two 

different crisp sets must be zero. Next, with similarity 

measure based on distance measure comparisons are 

carried out for the aforementioned paper example [10]. 

(, ) = 2 - ((∩,  )- ((∪,  ) (3)

Our computation results with (3) are illustrated in 

Table 3. 

From Table 3, we notice that the 10 sets all have 

different degrees of similarity except for Set 2 and Set 

6. So, (3) has a proper evaluation for the similarity. For 

the degree of similarity in Set 7, two membership 

functions are expressed clearly as a different singleton. 

Therefore, the similarity calculation value between the 

two membership functions has to satisfy zero. Now we 

can compute the Set 7 pair similarity as follows. 

(,) = 2 - ((∩,  ) - ((∪), )

       = 2 - (( ,  ) - (( , 

       = 2 – 1 – 1 = 0

Hence, proposed similarity measure based on the 

distance measure represents useful.

3. Application to Related Topics

Fuzzy entropy and similarity measure can be used 

as the tool of calculating the degree of dissimilarity and 

similarity with respect to the considering data. Hence, 

they have accessibility to the decision theory, system 

modeling or system management.

3.1 Decision Theory

For decision making, building partial consequence 

and objective compatibility have been designed through 

fuzzy set theory [11]. In order to design necessity and 

possibility of decision it is necessary to formulate 

objective and consequence as fuzzy membership 

function.

Compatibility level is composed with necessity and 

possibility as following formulation:

  = (1-)(, )+(, ),     (4)

where (, )  and (, )  are denoted as 
possibility and necessity of decision. Furthermore,   

and   are objective and consequence for considering 

fact, respectively. 

Considering fuzzy membership functions   and   

are needed to be small entropy, because low entropy 

value guarantee more certain to the fact. Furthermore 

possibility is greater than the necessity if the similarity 

between objective and consequence membership 

functions become greater. In example of [11], the fuzzy 

objective () corresponds to

() = 


, if 375 ≤   ≤ 450,

() = 1, if 0 ≤   ≤ 375,

() = 0, if   ≥ 450. 

Consequence functions satisfies 
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() = 


, if 375 ≤   ≤ 400,

() = 


, if 400 ≤   ≤ 425,

() = 0, if   ≤ 375 and ≥ 425. 

Similarity measure between   and   has the 

following structure.

(, ) = (  ∩  ,  ) + (  ∪ ,  ) (5)

It is clear that similarity measure value is 

proportional to the (, ) and (, ) by the 
graphical presentation of pairs   and . Therefore 

similarity modification is also applicable to the decision 

theory.

3.2 Characteristics of Relative Information 

Measure

Definition of relative information has not been 

formulated by researchers. In [12], they just proposed 

fuzzy relative information measure [,] as the 

fuzzy relative information measure of   to . Hence, 

definition of fuzzy relative information measure will be 

presented through analyzing the definition of [,].

Proposition 3.1 Fuzzy relative information measure 

[,] satisfies following properties:

(i)  if [,] = 0 and only if there is no intersection 

between   and , or ,  are ordinary sets.

(ii) [,] = [,] if  and only if () = ().

(iii) [,]  takes maximum value and [,]  ≥ 

[,] if and only if   is contained in , i.e, 

   ≤    for ∀  ∈ .
(iv) If ⊂⊂, then (,) ≥ (,) and (,

) = (, ) = (, ).

Liu insisted that entropy can be calculated from the 

similarity measure and dissimilarity measure, which is 

denoted by +=1 [2]. With this concept relative 

information measure can be designed via similarity 

measure. By the definition of entropy for certain fact, 

(∩) and () satisfy ((∩),(∩)    

and (,   ), respectively. Where, (∩)   

satisfies the same definition of   . Roughly, it can 

be satisfied that 

[, ] =   

∩∩ 
.     (6)

Where, ∩∩  = 1- ∩

∩≠    and (, ≠  ) = 1 - (,   ).

This measure also satisfies Proposition 3.1. Next, 

another relative information measure satisfying 

Proposition 3.1 without virtual ordinary sets  

∩   and    is considered. 

3.3 Fuzzy Coaliation in Game Theory 

Coalition vectors  ∈   are chosen inbetween 
zero and one, where  is a set of players. Each fuzzy 

coalition is identified with a point in the hypercube   

∈  , while an ordinary coalition is regarded as a 
vertex of this hypercube, a point in  ∈  . Hence, 
optimal choice of fuzzy coalition vector to minimized 

payoff function is needed. Whereas opponents also try 

to make minimized other side payoff function [13].

 ( , , ) =  ( ,)

( , , ) = ( ,)

Where, ∈   and ∈  are number of players and 
strategies, respectively. Furthermore,   = (, ) and 

  = (, ) are inputs to minimize payoff functions. In 

order to determine input variable player participation 

degree is determined by adjusting coalition vector. 

Problem can be transformed to determine is to 

determine  , which constitutes   = 
    



, and 

it minimize ( , ). Here,   = () are considered 

as the fuzzy set with membership values. Also 

strategies are considered as the ordinary set elements. 
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Then, it is possible to calculate the similarity measure 

between   and fixed values. It was also verified that 

the calculation of similarity measure between fuzzy set 

and single datum [9]. Hence, similarity measure is 

applicable to determine the coalition vector of fuzzy 

game theory. 

4. Conclusions

For information data groups, each datum or data set 

can be represented by uncertainty or certainty for fixed 

numerical values. Furthermore, it also has a correlation 

between the degree of similarity and dissimilarity. 

These meanings are expressed by fuzzy entropy and 

similarity measure. First, fuzzy entropy and similarity 

are introduced, and discussed their meaning and 

application. Usefulness was verified through discussing 

the previous application results. Two measures are 

applied to the reliable data selection problem, and 

similarity quantification of single datum or data set 

with respect to the ordinary set or fuzzy set. Fuzzy set 

analysis can be also applied to decision theory or 

system management problem, especially in fuzzy game 

theory. For decision making considered objective and 

consequence are needed. Decision tools, necessity and 

possibility, are proportional to the similarity measure 

between objective and consequence membership 

function. Hence, the conventional decision procedure, 

designing compatibility level, can be replaced with 

similarity measure. Finally, for more reliable 

combination of strategy similarity measure is also 

useful.
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