DOI QR코드

DOI QR Code

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young (Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration) ;
  • Mun, Seong Taek (Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital)
  • 투고 : 2013.03.28
  • 심사 : 2013.05.15
  • 발행 : 2013.08.01

초록

In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

키워드

참고문헌

  1. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 2010;51:679-89. https://doi.org/10.1002/hep.23280
  2. Adiels M, Taskinen MR, Packard C, Caslake MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Häkkinen A, Olofsson SO, Yki-Järvinen H, Borén J. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 2006;49:755-65. https://doi.org/10.1007/s00125-005-0125-z
  3. Fabbrini E, Magkos F, Mohammed BS, Pietka T, Abumrad NA, Patterson BW, Okunade A, Klein S. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 2009;106:15430-5. https://doi.org/10.1073/pnas.0904944106
  4. Hurjui DM, Niţă O, Graur LI, Mihalache L, Popescu DS, Graur M. The central role of the non alcoholic fatty liver disease in metabolic syndrome. Rev Med Chir Soc Med Nat Iasi 2012;116: 425-31.
  5. Yang J, Lv F, Chen XQ, Cui WX, Chen LH, Wen XD, Wang Q. Pharmacokinetic study of major bioactive components in rats after oral administration of extract of Ilex hainanensis by highperformance liquid chromatography/electrospray ionization mass spectrometry. J Pharm Biomed Anal 2013;77:21-8. https://doi.org/10.1016/j.jpba.2013.01.011
  6. Afonso MS, de O Silva AM, Carvalho EB, Rivelli DP, Barros SB, Rogero MM, Lottenberg AM, Torres RP, Mancini-Filho J. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr Metab (Lond) 2013;10:19. https://doi.org/10.1186/1743-7075-10-19
  7. Manoharan S, Vasanthaselvan M, Silvan S, Baskaran N, Kumar Singh A, Vinoth Kumar V. Carnosic acid: a potent chemopreventive agent against oral carcinogenesis. Chem Biol Interact 2010;188:616-22. https://doi.org/10.1016/j.cbi.2010.08.009
  8. Mengoni ES, Vichera G, Rigano LA, Rodriguez-Puebla ML, Galliano SR, Cafferata EE, Pivetta OH, Moreno S, Vojnov AA. Suppression of COX-2, IL-$1{\beta}$ and TNF-$\alpha$ expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L. Fitoterapia 2011;82:414-21. https://doi.org/10.1016/j.fitote.2010.11.023
  9. Tada M, Ohkanda T, Kurabe J. Syntheses of carnosic acid and carnosol, anti-oxidants in Rosemary, from pisiferic acid, the major constituent of Sawara. Chem Pharm Bull (Tokyo) 2010;58: 27-9. https://doi.org/10.1248/cpb.58.27
  10. Wang T, Takikawa Y, Satoh T, Yoshioka Y, Kosaka K, Tatemichi Y, Suzuki K. Carnosic acid prevents obesity and hepatic steatosis in ob/ob mice. Hepatol Res 2011;41:87-92. https://doi.org/10.1111/j.1872-034X.2010.00747.x
  11. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp- Arida A, Yeh M, McCullough AJ, Sanyal AJ; Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313-21. https://doi.org/10.1002/hep.20701
  12. Lutz SZ, Hennige AM, Feil S, Peter A, Gerling A, Machann J, Kröber SM, Rath M, Schürmann A, Weigert C, Häring HU, Feil R. Genetic ablation of cGMP-dependent protein kinase type I causes liver inflammation and fasting hyperglycemia. Diabetes 2011;60:1566-76. https://doi.org/10.2337/db10-0760
  13. Jang HH, Park MY, Kim HW, Lee YM, Hwang KA, Park JH, Park DS, Kwon O. Black rice (Oryza sativa L.) extract attenuates hepatic steatosis in C57BL/6 J mice fed a high-fat diet via fatty acid oxidation. Nutr Metab (Lond) 2012;9:27. https://doi.org/10.1186/1743-7075-9-27
  14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  15. Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, Micklem KJ, Frayn KN. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 2009;52:882-90. https://doi.org/10.1007/s00125-009-1300-4
  16. Wang XA, Deng S, Jiang D, Zhang R, Zhang S, Zhong J, Yang L, Wang T, Hong S, Guo S, She Z, Zhang XD, Li H. CARD3 deficiency exacerbates diet-induced obesity, hepatosteatosis, and insulin resistance in male mice. Endocrinology 2013;154:685-97. https://doi.org/10.1210/en.2012-1911
  17. Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 2009;9:299-314. https://doi.org/10.2174/156652409787847191
  18. Pettinelli P, Del Pozo T, Araya J, Rodrigo R, Araya AV, Smok G, Csendes A, Gutierrez L, Rojas J, Korn O, Maluenda F, Diaz JC, Rencoret G, Braghetto I, Castillo J, Poniachik J, Videla LA. Enhancement in liver SREBP-1c/PPAR-alpha ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion. Biochim Biophys Acta 2009;1792:1080-6. https://doi.org/10.1016/j.bbadis.2009.08.015
  19. Sekiya M, Yahagi N, Matsuzaka T, Najima Y, Nakakuki M, Nagai R, Ishibashi S, Osuga J, Yamada N, Shimano H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 2003;38:1529-39. https://doi.org/10.1016/j.hep.2003.09.028
  20. Yang ZX, Shen W, Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with nonalcoholic fatty liver disease. Hepatol Int 2010;4:741-8. https://doi.org/10.1007/s12072-010-9202-6
  21. Liu X, Strable MS, Ntambi JM. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv Nutr 2011;2:15-22. https://doi.org/10.3945/an.110.000125
  22. Flowers MT, Ntambi JM. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol 2008;19: 248-56. https://doi.org/10.1097/MOL.0b013e3282f9b54d
  23. Higuchi N, Kato M, Tanaka M, Miyazaki M, Takao S, Kohjima M, Kotoh K, Enjoji M, Nakamuta M, Takayanagi R. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Exp Ther Med 2011;2:1077-81. https://doi.org/10.3892/etm.2011.328
  24. Nagasawa T, Inada Y, Nakano S, Tamura T, Takahashi T, Maruyama K, Yamazaki Y, Kuroda J, Shibata N. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur J Pharmacol 2006;536:182-91. https://doi.org/10.1016/j.ejphar.2006.02.028

피인용 문헌

  1. Rosiglitazone and Fenofibrate Exacerbate Liver Steatosis in a Mouse Model of Obesity and Hyperlipidemia. A Transcriptomic and Metabolomic Study vol.13, pp.3, 2014, https://doi.org/10.1021/pr401230s
  2. Changes in fatty acid composition in tissue and serum of obese cats fed a high fat diet vol.11, pp.1, 2015, https://doi.org/10.1186/s12917-015-0519-1
  3. model and a high cholesterol diet-induced hypercholesterolemic mouse model vol.19, pp.2, 2015, https://doi.org/10.1080/19768354.2014.992953
  4. Carnosic acid protects non-alcoholic fatty liver-induced dopaminergic neuron injury in rats vol.32, pp.2, 2017, https://doi.org/10.1007/s11011-016-9941-8
  5. DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet–Induced Obesity vol.122, pp.2, 2014, https://doi.org/10.1289/ehp.1307047
  6. Attenuation of Free Fatty Acid-Induced Muscle Insulin Resistance by Rosemary Extract vol.10, pp.11, 2018, https://doi.org/10.3390/nu10111623
  7. Carnosic Acid Alleviates BDL-Induced Liver Fibrosis through miR-29b-3p-Mediated Inhibition of the High-Mobility Group Box 1/Toll-Like Receptor 4 Signaling Pathway in Rats vol.8, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2017.00976
  8. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver vol.4, pp.None, 2013, https://doi.org/10.1186/2045-3701-4-38
  9. Crude Extracts from Lycium barbarum Suppress SREBP-1c Expression and Prevent Diet-Induced Fatty Liver through AMPK Activation vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/196198
  10. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation vol.20, pp.1, 2013, https://doi.org/10.15430/jcp.2015.20.1.41
  11. Carnosic Acid as a Major Bioactive Component in Rosemary Extract Ameliorates High-Fat-Diet-Induced Obesity and Metabolic Syndrome in Mice vol.63, pp.19, 2013, https://doi.org/10.1021/acs.jafc.5b01246
  12. Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease vol.6, pp.7, 2013, https://doi.org/10.1038/cddis.2015.196
  13. Beneficial effects of the Mediterranean spices and aromas on non-alcoholic fatty liver disease vol.61, pp.None, 2013, https://doi.org/10.1016/j.tifs.2016.11.019
  14. Carnosic Acid Modulates Increased Hepatic Lipogenesis and Adipocytes Differentiation in Ovariectomized Mice Fed Normal or High-Fat Diets vol.10, pp.12, 2013, https://doi.org/10.3390/nu10121984
  15. Carnosic Acid Mitigates Early Brain Injury After Subarachnoid Hemorrhage: Possible Involvement of the SIRT1/p66shc Signaling Pathway vol.13, pp.None, 2013, https://doi.org/10.3389/fnins.2019.00026
  16. Sex differences in the effects of high-fat diet on mouse sciatic nerves vol.7, pp.3, 2013, https://doi.org/10.2131/fts.7.133
  17. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components vol.48, pp.6, 2013, https://doi.org/10.1142/s0192415x20500664
  18. Inhibition of p66Shc Oxidative Signaling via CA-Induced Upregulation of miR-203a-3p Alleviates Liver Fibrosis Progression vol.21, pp.None, 2013, https://doi.org/10.1016/j.omtn.2020.07.013
  19. An Exploration of the Effects of an Early Postpartum Intravenous Infusion with Carnosic Acid on Physiological Responses of Transition Dairy Cows vol.10, pp.9, 2021, https://doi.org/10.3390/antiox10091478
  20. Growth performance, biochemical composition and expression of lipid metabolism related genes in groupers (Epinephelus coioides) are altered by dietary taurine vol.27, pp.6, 2021, https://doi.org/10.1111/anu.13395