Abstract
PURPOSES: The purpose of this study was to investigate the disintegration mechanism of concrete due to the infiltration of the moisture to the milling overlay pavement and to come up with a method to minimize the disintegration as well as verifying the effectiveness of the edge sealing and Fogseal method. METHODS : This study investigated the distress mechanism due to the infiltrated moisture remaining in the milling overlay pavement through chloride freezing test and verified the effectiveness of the sealing of the milling edge and fog seal methods, which have been devised to minimize the moisture infiltration, through laboratory water permeability test. Additionally, long-term pavement performance was compared for the effectiveness of the proposed method through under loading test, and field water permeability test was carried out to verify the field applicability of the proposed method. RESULTS: The result of the research confirmed that chloride deteriorates the concrete surface through disintegration and lowers its strength and that the laboratory moisture infiltration test verified the effectiveness of the milling edge sealing and fog seal methods in the deterrence of moisture infiltration to the overlay pavement with excellent long-term performance of the pavement treated with the proposed method. Although the field water permeability test revealed some deterrence of moisture infiltration of the milling edge sealing and fog seal methods to a certain extent, the difference was a little. CONCLUSIONS: The milling edge sealing and fog seal methods are limited in their effectiveness for the cases of improvident compaction management or mixture with large void, and it is believed that installation of subsurface drainage is more effective in these cases.