초록
본 논문에서는 셀 간 간섭과 셀 내 사용자 간 간섭이 공존하는 two-cell 다중 안테나 하향링크 간섭 채널에서 송수신기 설계 방법을 제안한다. 우선 셀 간 간섭과 셀 내 사용자 간 간섭을 다차원 subspace에 정렬하는 zero-forcing 간섭 정렬 방법을 일반화한다. 그리고 일반화한 zero-forcing 간섭 정렬 방법에서 구한 송수신기를 "regularizing" 하는 minimum weighted-mean-square-error 기반 regularized ZF-IA 방법을 제안한다. 기존 weighted-sum-rate-maximizing 송수신기 설계 방법에 비해 제안하는 방법은 weight 를 구하는 반복 연산 과정이 필요하지 않다. 그 결과 제안하는 방법은 비록 sum-rate 최대화하도록 설계되진 않았지만, 기존의 weighted-sum-rate maximizing 방법 보다 계산 복잡도 면에서 효율적이고 더 빠른 수렴 속도를 얻을 수 있다. 다양한 분석과 실험을 통해 제안하는 regularized ZF-IA 방법의 우수성을 확인하였다. 구체적으로 반복 연산 수가 작은 경우, 제안하는 regularized ZF-IA 방법의 sum-rate 성능이 기존의 weighted-sum-rate maximizing 방법보다 SNR = 20 [dB] 에서 약 49.8 % 이상 나음을 확인할 수 있다. 더불어 채널 정보에 오차가 있는 경우 상당한 robustness를 제공하는 robust 송수신기 설계 방법도 제시한다.
In this paper, we propose transceiver design strategies for the two-cell multiple-input multiple-output (MIMO) interfering broadcast channel where inter-cell interference (ICI) exists in addition to inter-user interference (IUI). We first formulate the generalized zero-forcing interference alignment (ZF-IA) method based on the alignment of IUI and ICI in multi-dimensional subspace. We then devise a minimum weighted-mean-square-error (WMSE) method based on "regularizing" the precoders and decoders of the generalized ZF-IA scheme. In contrast to the existing weighted-sum-rate-maximizing transceiver, our method does not require an iterative calculation of the optimal weights. Because of this, the proposed scheme, while not designed specially to maximize the sum-rate, is computationally efficient and achieves a faster convergence compared to the known weighed-sum-rate maximizing scheme. Through analysis and simulation, we show the effectiveness of the proposed regularized ZF-IA scheme.