DOI QR코드

DOI QR Code

Non-Robust and Robust Regularized Zero-Forcing Interference Alignment Methods for Two-Cell MIMO Interfering Broadcast

두 셀 다중 안테나 하향링크 간섭 채널에서 비강인한/강인한 정칙화된 제로포싱 간섭 정렬 방법

  • Received : 2013.04.18
  • Accepted : 2013.07.09
  • Published : 2013.07.31

Abstract

In this paper, we propose transceiver design strategies for the two-cell multiple-input multiple-output (MIMO) interfering broadcast channel where inter-cell interference (ICI) exists in addition to inter-user interference (IUI). We first formulate the generalized zero-forcing interference alignment (ZF-IA) method based on the alignment of IUI and ICI in multi-dimensional subspace. We then devise a minimum weighted-mean-square-error (WMSE) method based on "regularizing" the precoders and decoders of the generalized ZF-IA scheme. In contrast to the existing weighted-sum-rate-maximizing transceiver, our method does not require an iterative calculation of the optimal weights. Because of this, the proposed scheme, while not designed specially to maximize the sum-rate, is computationally efficient and achieves a faster convergence compared to the known weighed-sum-rate maximizing scheme. Through analysis and simulation, we show the effectiveness of the proposed regularized ZF-IA scheme.

본 논문에서는 셀 간 간섭과 셀 내 사용자 간 간섭이 공존하는 two-cell 다중 안테나 하향링크 간섭 채널에서 송수신기 설계 방법을 제안한다. 우선 셀 간 간섭과 셀 내 사용자 간 간섭을 다차원 subspace에 정렬하는 zero-forcing 간섭 정렬 방법을 일반화한다. 그리고 일반화한 zero-forcing 간섭 정렬 방법에서 구한 송수신기를 "regularizing" 하는 minimum weighted-mean-square-error 기반 regularized ZF-IA 방법을 제안한다. 기존 weighted-sum-rate-maximizing 송수신기 설계 방법에 비해 제안하는 방법은 weight 를 구하는 반복 연산 과정이 필요하지 않다. 그 결과 제안하는 방법은 비록 sum-rate 최대화하도록 설계되진 않았지만, 기존의 weighted-sum-rate maximizing 방법 보다 계산 복잡도 면에서 효율적이고 더 빠른 수렴 속도를 얻을 수 있다. 다양한 분석과 실험을 통해 제안하는 regularized ZF-IA 방법의 우수성을 확인하였다. 구체적으로 반복 연산 수가 작은 경우, 제안하는 regularized ZF-IA 방법의 sum-rate 성능이 기존의 weighted-sum-rate maximizing 방법보다 SNR = 20 [dB] 에서 약 49.8 % 이상 나음을 확인할 수 있다. 더불어 채널 정보에 오차가 있는 경우 상당한 robustness를 제공하는 robust 송수신기 설계 방법도 제시한다.

Keywords

References

  1. H. Kwon, S. Ko, H. Seo, and B. G. Lee, "Inter-cell interference management for next-generation wireless communication systems," J. Commun. Networks, vol. 10, no. 3, pp. 258-267, Sep. 2008. https://doi.org/10.1109/JCN.2008.6388347
  2. Q. Shi, M. Razaviyayn, Z. Luo, and C. He, "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel," IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331-4340, Sep. 2011. https://doi.org/10.1109/TSP.2011.2147784
  3. J. Shin, and J. Moon, "Weighted-sum-rate-maximizing linear transceiver filters for the K-user MIMO interference channel," IEEE Trans. Commun., vol. 60, no. 10, pp. 2776-2783, Oct. 2012. https://doi.org/10.1109/TCOMM.2012.091012.110110
  4. J. Kim, S.-H. Park, H. Sung, and I. Lee, "Spatial multiplexing gain for two interfering MIMO broadcast channels based on linear transceiver," IEEE Trans. Wireless Commun., vol. 9, no. 10, pp. 3012-3017, Oct. 2010. https://doi.org/10.1109/TWC.2010.081610.100526
  5. W. Shin, N. Lee, J.-B. Lim, C. Shin and K. Jang, "On the design of interference alignment for two-cell MIMO interfering broadcast channels," IEEE Trans. Wireless Commun., vol. 10, no. 2, pp. 437-442, Feb. 2011. https://doi.org/10.1109/TWC.2011.120810.101097
  6. C. Suh, M. Ho, and D. Tse, "Downlink interference alignment," IEEE Trans. Commun., vol. 59, no. 9, pp. 2616-2626, Sep. 2011. https://doi.org/10.1109/TCOMM.2011.070511.100313
  7. V. R. Cadambe and S. A. Jafar, "Interference alignment and degrees of freedom of the K-user interference channel," in Proc. IEEE Int. Conf. Commun. (ICC), pp. 971-975, Beijing, China, May 2008.
  8. S. Jafar, and M. Fakhereddin, "Degrees of freedom for the MIMO interference channel," in Proc. IEEE Int. Symp. Inform. Theory, pp. 1452-1456, Seattle, U.S.A., July 2006.
  9. C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, "A vector-perturbation technique for near-capacity achieving multiantenna multiuser communication. Part I: Channel inversion and regularization," IEEE Trans. Commun., vol. 53, no. 1, pp. 195-202, Jan. 2005. https://doi.org/10.1109/TCOMM.2004.840638
  10. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461-471, Feb. 2004. https://doi.org/10.1109/TSP.2003.821107
  11. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.