DOI QR코드

DOI QR Code

Effects of Electron Irradiation on the Properties of ZnO Thin Films

  • Kim, Seung-Hong (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Sun-Kyung (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, So-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan) ;
  • Choi, Dae-Han (Innovation Planning Team, Shinki Intermobile Ltd.) ;
  • Lee, Byung-Hoon (Innovation Planning Team, Shinki Intermobile Ltd.) ;
  • Kim, Min-Gyu (Innovation Planning Team, Shinki Intermobile Ltd.)
  • 투고 : 2012.07.31
  • 심사 : 2013.06.28
  • 발행 : 2013.08.25

초록

ZnO films were deposited on glass substrates by radio frequency (RF) magnetron sputtering and exposed to intense electron beam irradiation to investigate the effects of electron irradiation on the properties of the films. Although all of the films had ZnO (002) textured structure regardless of electron irradiation, the grain sizes of the films decreased with electron irradiation. Surface roughness also depended on electron irradiation. The surface roughness varied between 2.3 and 1.6 nm, depending on the irradiation energy. Based on photoluminescence (PL) characterization, the most intense UV emission was observed from ZnO films irradiated at 900 eV. Since the intensity of UV emission is dependent upon the stoichiometric of ZnO films, we conclude that 900 eV was the optimum electron irradiation energy to achieve the best stoichiometric of ZnO films in this study.

키워드

참고문헌

  1. C. T. Lee, Y. K. Su, and S. L. Chen, J. Cryst. Growth 96, 785 (1989) [DOI: http://dx.doi.org/10.1016/0022-0248(89)90637-4].
  2. S. K. Shukla, A. Tiwari, G. K. Parashar, A. P. Mishra, and G. C. Dubey, Talanta, 80, 565 (2009) [DOI: http://dx.doi.org/10.1016/j.talanta.2009.07.026].
  3. S. Suzuki, T. Miyata, M. Ishii, and T. Minami, Thin Solid Films 434, 14 (2003) [DOI: http://dx.doi.org/10.1016/S0040-6090(03)00463-2].
  4. J. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, and T. Minami, Thin Solid Films 518, 2937 (2010) [DOI: http://dx.doi.org/10.1016/j.tsf.2009.10.134].
  5. A. Yamada, B. Sang, and M. Konagai, Appl. Surf. Sci. 112, 216 (1997) [DOI: http://dx.doi.org/10.1016/S0169-4332(96)01022-7].
  6. S. Venkatachalam, and Y. Kanno, Curr. Appl. Phys. 9, 1232 (2009) [DOI: http://dx.doi.org/10.1016/j.cap.2009.02.003].
  7. B. D. Cullity : Elements of X-ray Diffraction, (Addition-Wesley, Reading, MA, 1978), 102-121.
  8. D. Kim, and S. Kim, Thin Solid Films 408, 218 (2002) [DOI:http://dx.doi.org/10.1016/S0040-6090(02)00148-7].
  9. D. Kim, Renewable Energy 36, 525 (2011) [DOI: http://dx.doi.org/10.1016/j.renene.2010.06.031].
  10. S. H. Bae, S. Y. Le, B. J. Jin, and S. Im, Appl. Surf. Sci. 154-155, 458 (2000) [DOI: http://dx.doi.org/10.1016/S0169-4332(99)00398-0].

피인용 문헌

  1. Effect of 8 MeV electrons irradiation on carrier transport mechanism in ZnO thin films fabricated by sol-gel spin coating technique 2018, https://doi.org/10.1016/j.surfcoat.2018.01.087
  2. 8MeV electron beam induced modifications in the structural, optical and electrical properties of Al doped ZnO thin film vol.56, 2016, https://doi.org/10.1016/j.mssp.2016.09.009