DOI QR코드

DOI QR Code

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer

PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구

  • Kim, Seung Ho (Department of Electronic Engineering, Dankook University) ;
  • Choi, Jae Young (Department of Electronic Engineering, Dankook University) ;
  • Chang, Ho Jung (Department of Electronic Engineering, Dankook University)
  • Received : 2013.06.12
  • Accepted : 2013.06.26
  • Published : 2013.06.30

Abstract

In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.

본 논문은 캐리어의 이동도 및 전도도를 개선하고, 흡수된 빛의 이동 경로를 증가시켜 광흡수도를 높이기 위하여 정공 수송층 재료에 금 나노입자를 첨가하여 유기태양전지를 제작하였다. 광활성층으로는 P3HT와 PCBM의 bulk-heterojunction 구조를 사용하였다. 유기태양전지에서 금 나노입자를 첨가한 정공 수송층의 효과를 관찰하기 위하여 금 나노입자의 첨가량(0, 0.5, 1.0 wt% Au)과 열처리온도(상온, $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$)에 따른 광학적 전기적 특성을 조사하였다. 최대전력변환효율을 갖는 유기태양전지는 0.5 wt% 금 나노입자 첨가한 소자와 $130^{\circ}C$에서 열처리한 소자에서 관찰되었다. 이때 유기태양전지의 전기적 특성은 금 나노입자를 0.5 wt% 첨가한 경우, 단락전류밀도, 곡선인자 및 전력변환효율은 각각 10.2 $mA/cm^2$, 55.8% 및 3.1%로 나타났으며, $130^{\circ}C$에서 열처리한 경우, 12.0 $mA/cm^2$의 단락전류밀도와 64.2%의 곡선인자를 가지며, 4.0%의 전력변환효율이 관찰되었다.

Keywords

References

  1. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, "Plastic Solar Cells", Adv. Funct. Mater., 11(1), 15 (2001). https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  2. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing", Science, 317, 222 (2007). https://doi.org/10.1126/science.1141711
  3. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends", Nat. Mater., 4, 864 (2005). https://doi.org/10.1038/nmat1500
  4. A. O. Sevim and S. Mutlu, "Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their PV properties", Org. Electron., 10, 18 (2009). https://doi.org/10.1016/j.orgel.2008.09.003
  5. S. S. Sun and N. S. Saricftci, Organic Photovoltaics: Mechanisms, Materials, and Devices, Talyor Francis, Now York (2005).
  6. D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys., 25, 676 (1954). https://doi.org/10.1063/1.1721711
  7. J. Yi, Properties and Applications of Thin Films Amorphous and micro-crystalline(poly) Silicon, Ph.D. Dissertation, SUNY at Buffalo, NY (1994).
  8. C. W. Tang and C.W., "Two-layer Organic Photovoltaic Cell", Appl. Phys. Lett., 48(2), 183 (1986). https://doi.org/10.1063/1.96937
  9. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, "Photoinduced Electron Transfer form a Conducting Polymer to Buckminsterfullerene", Science, 258, 1474 (1992). https://doi.org/10.1126/science.258.5087.1474
  10. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry, E. Muller, P. Liska, N.Vlachopoulos and M. Gratzel, "Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline $TiO_{2}$ Electrodes", J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  11. D. Chirvase, J. Parisi, J.C. Hummelen and V. Dyakonov, "Influence of Nanomorphology on the Photovoltaic Action of Polymer-fullerence Composites", Nanotechnology, 15, 1317 (2004). https://doi.org/10.1088/0957-4484/15/9/035
  12. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Adv. Funct. Mater., 15, 1617 (2005). https://doi.org/10.1002/adfm.200500211
  13. T. W. Holcombe, C. H. Woo, D. F. J. Kavulak, B. C. Thompson and J. M. J. Frechet, "All-Polymer Photovoltaic Devices of Poly(3-(4-n-octyl)-phenylthiophene) from Grignard Materials (GRIM) Polymeriztion", J. Am. Chem. Soc., 131, 14160 (2009). https://doi.org/10.1021/ja9059359
  14. J. J. M. Hall, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, "Efficient Photodiodes from Interpenetrating Polymer Networks", Nature, 376, 498 (1995). https://doi.org/10.1038/376498a0
  15. W. S. Shin and S. H. Jin, "Recent Development of Polymer Solar Cells", Poly. Sci. Tech., 17(4), 416 (2006). (in Korean)
  16. Y. T. Cheng, J. J. Ho, C. K. Wang, W. Lee, C. C. Lu, B. S. Yau, J. L. Nain, S. H. Chang, C. C. Chang and K. L. Wang, "Improvement of Organic Solar Cells by Flexible Substrate and ITO Surface Treatments", Appl. Surf. Sci., 256, 7606 (2010). https://doi.org/10.1016/j.apsusc.2010.06.011
  17. S. K. Jang, S. C. Gong and H. J. Chang, "The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer", J. Microelectron. Packag. Soc., 17(2), 63 (2010).
  18. J. Y. Cho and H. J. Chang, "Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperature", J. Microelectron. Packag. Soc., 10(4), 35 (2003).
  19. S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan and C. Zhu, "Improvement in the Hole Collection of Polymer Solar Cells by Utilizing Gold Nanoparticle Buffer Layer", Chem. Phys. Lett., 453, 73 (2008). https://doi.org/10.1016/j.cplett.2008.01.013
  20. J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, "4.2% Efficient Organic Photovoltaic Cells with Low Series Resistances", Appl. Phys. Lett., 84(16), 3013 (2004). https://doi.org/10.1063/1.1713036
  21. B. Mazhari, "An Improved Solar Cell Circuit Model for Organic Solar Cells", Sol. Energy Mater. Sol. Cells, 90, 1021 (2006). https://doi.org/10.1016/j.solmat.2005.05.017
  22. S. Shahin, P. Gangopadhyay and R.A. Norwood, "Ultrathin Organic Bulk Heterojunction Solar Cells: Plasmon Enhanced Performance Using Au Nanoparticles", Appl. Phys. Lett., 101, 053109 (2012). https://doi.org/10.1063/1.4739519
  23. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook and J. R. Durrant, "Device Annealing Effect in Organic Solar Cells with Blends of Regioregular Poly(3-hexylthiophene) and Soluble Fullerene", Appl. Phys. Lett., 86, 063502 (2005). https://doi.org/10.1063/1.1861123
  24. A. Zen, J. Pflaun, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf and D. Neher, "Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors", Adv. Funct. Mater., 14(8), 757 (2004). https://doi.org/10.1002/adfm.200400017
  25. G. Li, V. Shrotriya, Y. Yao, J. S. Huang and Y. Yang, "Manipulating Regioregular Poly(3-hexylthiophene):[6,6]-Phenyl- C61-butric Acid Methyl Ester Blends-Route Towards High Efficiency Polymer Solar Cells", J. Mater. Chem., 17, 3126 (2007). https://doi.org/10.1039/b703075b
  26. Y. Kim, A. M. Ballantyne, J. Nelson and D. D. C. Bradley, "Effects of Thickness and Thermal Annealing of the PEDOT:PSS Layer on the Performance of Polymer Solar Cells", Org. Electron., 10, 205 (2009). https://doi.org/10.1016/j.orgel.2008.10.003
  27. F. C. Chen, H. C. Tseng and C. J. Ko, "Solvent Mixtures for Improving Device Efficiency of Polymer Photovoltaic Devices", Appl. Phys. Lett., 92, 103316 (2008). https://doi.org/10.1063/1.2898153
  28. S. Cho and K. Lee, "Heat-Treatment-Induced Enhancement in the Optical Spectra of Poly(3,4-Ethylenedioxythiophene)/ Poly(Stylenesulfonate) Films", J. Korean Phys. Soc., 46(4), 973 (2005).
  29. X. Wu, T.-A. Chen, R. D. Rieke, "A Study of Small Band- Gap Polymers-Head-to-Tail Regioregular Poly(3-(Alkylthio) Thiophenes) Prepared by Regioselective Synthesis Using Active Zinc", Macromolecules, 29(24), 7671 (1996). https://doi.org/10.1021/ma960946m

Cited by

  1. The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer vol.21, pp.1, 2014, https://doi.org/10.6117/kmeps.2014.21.1.007
  2. Thermal Assisted UV-Ozone Treatment to Improve Reliability of Ag Nanoparticle Thin Films vol.21, pp.1, 2014, https://doi.org/10.6117/kmeps.2014.21.1.041
  3. Effects of Organic Passivation Films on Properties of Polymer Solar Cells with P3HT:PC61BM Active Layers vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.105