DOI QR코드

DOI QR Code

A History of Investigations of Population Dynamics and Epidemiology

집단 및 질병 동역학에 대한 역사발생적 고찰

  • Received : 2013.02.28
  • Accepted : 2013.04.10
  • Published : 2013.05.31

Abstract

The late 18C Malthus studied population growth for the first time, Verhulst the logistic model in 19C and, after that, the study of the predation competition between two species resulted in the appearance of Lotka-Volterra model and modified model supported by Gause's experiment with bacteria. Instable coexistence equilibrium being found, Solomon and Holling proposed functional and numerical response considering limited abilities of predator on prey, which applied to Lotka Volterra model. Nicholson and Baily, considering the predation between host and parasitoid in discrete time, made a model. In 20C there were developed various models of disease dynamics with the help of mathematics and real data and named SIS, SIR or SEIR on the basis of dynamical phenomena.

18세기 후반, 맬더스는 최초로 집단의 개체군 성장에 대해 연구하였고 버룰스트는 맬더스 모델을 수정하여 로지스틱 모델을 창안하였다. 종간의 포식경쟁에 대한 모델로서 록카-볼테라모델이 만들어졌으며 가우스는 박테리아를 이용한 실험을 통해 록카-볼테라 모델을 변형 발전시켰다. 종간의 포식 작용과 경쟁에 대해 연구하는 와중에 불안정 공존 부동점의 존재가 밝혀지면서 솔로몬과 홀링은 피식자에 대한 포식자의 제한된 능력을 고려한 기능 반응과 수반응을 록카-볼테라 모델에 적용하였다. 니콜슨과 베일리는 숙주와 기생포식자 사이의 포식활동을 연구하여 이산 모델을 만들었다. 20세기에 들어와서 질병 역학에 대한 수학적 모델이 연구되었고 실제 자료와의 비교 연구가 진행되었다. 질병 역학 모델은 역학적 현상에 따라 SIS, SIR 또는 SEIR과 같은 다양한 모델로 명명되었는데, 이들 대부분은 SlR모델을 기본으로 하여 발전되었다.

Keywords

References

  1. Arditi, R. and Berryman, A. A.,"The Biological control paradox", Trends in Ecology and Evolution, 6(1991), p. 32. https://doi.org/10.1016/0169-5347(91)90148-Q
  2. Dongmei Xiao and Shigui Ruan,"Global dynamics of a ratio-dependent predator prey system", J. Math. Biol., 43(2001), 268-290. https://doi.org/10.1007/s002850100097
  3. Eric W. Weisstein et al,"Kermack-mckendrick disease model", http://mathworld. wolfram.com/Kermack-McKendrickModel.html.
  4. Gause, G. F., The struggle for existence, Williams and Wilkins, Baltimore, Maryland, USA, 1934.
  5. Gerda de Vries et al, A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods, Siam. Society for Industrial and Applied Mathematics Philadelphia, 2006.
  6. J. D. Murray, Mathematical Biology: I. An Introduction, Third Edition, Springer-Verlag Berlin Heidelberg, 2002.
  7. J. David Logan and William R. Wolesensky, Mathematical Methods in Biology, A Wiley-Interscience Series of Texas, Monographs, and Tracts, 2009.
  8. Luck, R. F.,"Evaluation of natural enemies for biological control: a behavior approach", Trends in Ecology and Evolution, 5(1990), 196-199. https://doi.org/10.1016/0169-5347(90)90210-5
  9. Nicholson, A. J. and V. A. Bailey,"The balance of animal populations", Proceedings of the Zoological Society of London, 1(1935), 551-598.
  10. N. J. Mills and W. M. Getz, 1996."Modeling the biological control of insect pests : a review of host-parasitoid models", Ecological Modelling, 92(1996), 121-143. https://doi.org/10.1016/0304-3800(95)00177-8
  11. Rogers, D. J.,"Random search and insect population models", Journal Animal Ecology, 41(1972), 369-383. https://doi.org/10.2307/3474
  12. Siza Mwalusepo, Henri E.Z. Tonnang and Estomih S. Massawe,"Evaluation of continuous host-parasitoid models", African Journal of Mathematics and Computer Science Research, 4(2) (2011), 39-54.
  13. Sze-Bi Hsu, Tzy-Wei Hwang and Yang-Kuang,"Global analysis of the Michaelis- Menten-type ratio-dependent predator-prey system", J. Math. Biol., 42(2001), 489-506. https://doi.org/10.1007/s002850100079
  14. Thomas Malthus, An Essay on the Principle of Population, Electronic Edition, St. Paul' s Church-Yard, 1798.
  15. Thompson, W. R.,"On the relative value of parasites and predators in the biological control of insect pests", Bull. Entool. Res., 19(1929), 343-350.
  16. Yang Kuang,"Rich dynamics of Gause-type ratio-dependent predator-prey system", Fields Institute Communications, 21(1999), 325-337.