Abstract
Activeness of exercise is critical for stroke rehabilitation so that application of stimulation in response to patient's intention would be effective in FES cycling. The purpose of this study was to investigate the relationship between muscle reaction force (MRF) and electromyogram (EMG) during cycling exercise, for the future usage of MRF as patients' intention signal. Seven young men ($24{\pm}1.63$ yrs) participated in this study. Cycling speed was set to 20 RPM and 60 RPM. MRF and EMG were measured in the vastus lateralis muscle of right leg. Active cycling was performed at the maximal load (16 Nm) of an ergometer. Angle dependent artifact in MRF was measured from passive cycling and was subtracted from the MRF of active cycling. The delay of MRF with respect to EMG envelope and their correlation coefficients were derived from the best of cross correlation. MRF was significantly correlated with EMG amplitude in all subjects (p<0.01). Their mean correlations were 0.84 and 0.91 for 20 RPM and 60 RPM, respectively. Mean delay in MRF was 59.14 ms and 53.14 ms for 20 RPM and 60 RPM, respectively. The result suggests that MRF can be used to assess patient's intention for exercise as a substitute to EMG. The method may be applied to FES cycling to encourage patient's effort which is critical for stroke rehabilitation.