DOI QR코드

DOI QR Code

Fabrication of TiO2 Nanowires Using Vapor-Liquid-Solid Process for the Osseointegration

골융합을 위한 Vapor-Liquid-Solid 법을 이용한 TiO2 나노와이어의 합성

  • Yun, Young-Sik (School of Integrated Technology, Yonsei University) ;
  • Kang, Eun-Hye (Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University) ;
  • Yun, In-Sik (Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University) ;
  • Kim, Yong-Oock (Department of Plastic & Reconstructive Surgery, College of Medicine, Yonsei University) ;
  • Yeo, Jong-Souk (School of Integrated Technology, Yonsei University)
  • 윤영식 (연세대학교 글로벌융합공학부) ;
  • 강은혜 (연세대학교 의과대학 성형외과학교실) ;
  • 윤인식 (연세대학교 의과대학 성형외과학교실) ;
  • 김용욱 (연세대학교 의과대학 성형외과학교실) ;
  • 여종석 (연세대학교 글로벌융합공학부)
  • Received : 2013.06.13
  • Accepted : 2013.07.08
  • Published : 2013.07.30

Abstract

In order to improve osseointegration for biomedical implants, it is crucial to understand the interactions between nanostructured surfaces and cells. In this study, $TiO_2$ nanowires were prepared via Vapor-Liquid-Solid (VLS) process with Sn as a metal catalyst in the tube furnace. Nanowires were grown with $N_2$ heat treatment with their size controlled by the agglomeration of Sn layers in various thicknesses. MC3T3-E1 (pre-osteoblast) were cultured on the $TiO_2$ nanowires for a week. Preliminary results of the cell culture showed that the cells adhere well on the $TiO_2$ nanowires.

임플란트와의 골융합을 향상시키기 위해서 세포와 임플란트 표면의 나노구조의 상호작용에 대한 이해가 중요하다. 본 연구에서는 Sn를 촉매로 이용하여 Vapor-Liquid-Solid 법을 이용하여 $TiO_2$ 나노와이어를 튜브 전기로 안에서 질소기체 조건하에서 합성하였다. 이 때 촉매로 사용된 Sn 박막의 두께에 따라 응집된 나노스피어를 이용하여 $TiO_2$ 나노와이어의 크기를 조절하였다. 골융합을 위한 예비 실험으로써, 만들어진 $TiO_2$ 나노와이어 샘플 위에서 조골전구세포(pre-osteoblast)를 1주일간 배양하였고, 세포가 $TiO_2$ 나노와이어에 잘 결합함을 볼 수 있었다.

Keywords

References

  1. R. C. Dutta and A. K. Dutta, Biotechnol. Adv. 27, 334 (2009). https://doi.org/10.1016/j.biotechadv.2009.02.002
  2. E. Engel, A. Michiardi, M. Navarro, D. Lacroix, and J. A. Planell, Trends Biotechnol. 26, 39 (2007).
  3. I. Wheeldon, A. Farhadi, A. G. Bick, E. Jabbari, and A. Khademhosseini, Nanotechnology 22, 212001 (2011). https://doi.org/10.1088/0957-4484/22/21/212001
  4. C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997). https://doi.org/10.1126/science.276.5317.1425
  5. R. Langer, J. T. Borenstein, and C. J. Bettinger, Angew. Chem. Int. Ed. 48, 5406 (2009). https://doi.org/10.1002/anie.200805179
  6. B. Geiger, J. P. Spatz, and A. D. Bershadsky, Nat. Rev. Mol. Cell Bio. 10, 21 (2009). https://doi.org/10.1038/nrm2593
  7. A. P. Tomsia, M. E. Launey, J. S. Lee, M. H. Mankani, U. G. K. Wegst, and E. Saiz, J. Oral. Max. Impl. 26, 25 (2011).
  8. R. M. Streilcher, M. Schmidt, and S. Fiorito, Nanomedicine 2, 861 (2007). https://doi.org/10.2217/17435889.2.6.861
  9. B. E. Rapuano, D. E. MacDonald, Colloids and Surfaces B: Biointerfaces 82, 95 (2011). https://doi.org/10.1016/j.colsurfb.2010.08.023
  10. R. Zhang, Y. An, C. A. Toth, R. A. Draughn, N. M. Dimaano, and M. V. Hawkins, J. Biomater. Res. B. 71B, 408 (2004). https://doi.org/10.1002/jbm.b.30110
  11. Y. Wu, J. P. Zitelli, K. S. TenHuisen, X. Yu, and M. R. Libera, Biomaterials 32, 951 (2011). https://doi.org/10.1016/j.biomaterials.2010.10.001
  12. A. W. Tan, B. Pingguan-Murphy, R. Ahmad, and S. A. Akbar, Ceramics International 38, 4421 (2012). https://doi.org/10.1016/j.ceramint.2012.03.002
  13. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964). https://doi.org/10.1063/1.1753975
  14. J. C. Lee, K. S. Park, T. G. Kim, H. J. Choi, and Y. M. Sung, Nanotechnology 17, 4317 (2006). https://doi.org/10.1088/0957-4484/17/17/006
  15. S. S. Amin, A. W. Nicholls, and T. T. Xu, Nanotechnology 18, 445609 (2007). https://doi.org/10.1088/0957-4484/18/44/445609
  16. Y. S. Park and J. S. Lee, Bull. Korean Chem. Soc. 32, 3571 (2011) https://doi.org/10.5012/bkcs.2011.32.10.3571
  17. J. Y. Ha, B. D. Sosnowchik, L. Lin, D. H. Kang, and A. V. Davydov, Appl. Phys. Express 4, 065002 (2011). https://doi.org/10.1143/APEX.4.065002
  18. H. Lee, S. Dregia, S. Akbar, and M. Alhoshan, Journal of Nanomaterials 2010, 503186 (2010).
  19. H. W. Shin, J. C. Shin, and J. W. Choe, J. Korean Vac. Soc. 22, 105 (2013). https://doi.org/10.5757/JKVS.2013.22.2.105
  20. H. Lee, Titanium Oxide Nanowire Growth by Oxidation Under a Limited Supply of Oxygen: Processing and Characterization, (Dissertation, 2009), pp. 201-224.

Cited by

  1. Growing TiO2 nanowires by solid–liquid–solid mechanism including two factors (Ti and O) vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-9963-4