DOI QR코드

DOI QR Code

Fine Grained Resource Scaling Approach for Virtualized Environment

가상화 환경에서 세밀한 자원 활용률 적용을 위한 스케일 기법

  • 이돈혁 (아주대학교 컴퓨터공학과) ;
  • 오상윤 (아주대학교 컴퓨터공학과)
  • Received : 2012.12.18
  • Accepted : 2013.07.14
  • Published : 2013.07.31

Abstract

Recently operating a large scale computing resource like a data center becomes easier because of the virtualization technology that virtualize servers and enable flexible resource provision. The most of public cloud services provides automatic scaling in the form of scale-in or scale-out and these scaling approaches works well to satisfy the service level agreement (SLA) of users. However, a novel scaling approach is required to operate private clouds that has smaller amount of computing resources than vast resources of public clouds. In this paper, we propose a hybrid server scaling architecture and related algorithms using both scale-in and scale-out to achieve higher resource utilization rate for private clouds. We uses dynamic resource allocation and live migration to run our proposed algorithm. Our propose system aims to provide a fine-grain resource scaling by steps. Thus private cloud systems are able to keep stable service and to reduce server management cost by optimizing server utilization. The experiment results show that our proposed approach performs better in resource utilization than the scale-out approach based on the number of users.

최근 데이터 센터와 같은 대규모 컴퓨터 자원을 운용함에 있어 가상화 기술을 적용하여 컴퓨팅 자원을 동적으로 사용할 수 있게 됨에 따라 탄력적인 프로비져닝이 가능하게 되었다. 현재 운영되고 있는 클라우드 시스템에서는 이러한 동적 프로비져닝을 위해 스케일업 또는 스케일아웃형태의 스케일링을 지원하고있으며, 이 방식은 사용자 요구조건의 만족을 주목적으로 하며 방대한 컴퓨팅 자원을 기반으로 하는 공공 클라우드 시스템 운용에 부합한다. 그러나 제한된 컴퓨팅자원으로 하는 사설 클라우드의 운영을 위해서는 보다 높은 운영 효율을 위해 세밀한 자원활용을 위한 스케일링 기법이 요구된다. 본 논문에서는 사설 클라우드에서 높은 자원활용률을 얻기 위해 가상화 기술인 동적자원할당과 Live Migration 기법을 이용하여 스케일업과 스케일아웃을 복합적으로 사용한 서버 스케일링 아키텍처를 설계하고 이에 따른 알고리즘을 설계하였다. 이를 통해 세밀하게 단계별로 스케일링을 진행하여 서버 관리와 비용의 부담을 줄이고 서버 자원의 이용률을 최적화함으로써 서비스가 안정적으로 유지되도록 할 수 있다. 성능평가를 통해 제안한 구조와 알고리즘이 접속자 수에 따른 스케일 아웃을 수행하는 방식에 비해 높은 자원활용률을 보이는 것을 확인하였다.

Keywords

References

  1. O'Reilly, T. What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software. 30 September 2005. Available from: http://www.oreillynet.com/lpt/a/6228
  2. J. Farrell, G. Nezlek, Rich Internet Applications The Next Stage of Application Development, 29th Int. Conference on Information Technology Interfaces, 2007. ITI 2007, 2007, pp. 413-418.
  3. D.A. Menasce and V.A.F. Almeida, Capacity Planning for Web Services: Metrics, Models, and Methods, Prentice Hall, Upper Saddle River, N.J., 2002.
  4. K. Lee, S. Park. "A Dynamic Allocation Scheme for Improving Memory Utilization in Xen". Journal of Kiise : Computer System and Theory, Jun 2010.
  5. C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, et al, "Live migration of virtual machines," NSDI, 2005.
  6. W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, "Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation". Technical report, Clouds Laboratory, University of Melbourne, Australia, 5 April, 2009
  7. T. Cucinotta, D. Giani, D. Faggioli, and F. Checconi, "Providing Performance Guarantees to Virtual Machines using Real-Time Scheduling," in Proc. of 5th Workshop on Virtualization and High- Performance Cloud Computing (VHPC 2010), August 30-31, 2010.
  8. C. Sapuntzakis , D. Brumley , R. Chandra , N. Zeldovich , J. Chow , M.S. Lam, M. Rosenblum, "Virtual Appliances for Deploying and Maintaining Software", Proceedings of the 17th USENIX conference on System administration, October 26-31, 2003, San Diego, CA
  9. A. Zahariev, "Google App Engine", Apr 20
  10. Amazon Web Services: Elastic Load Balancing http://aws.amazon.com/elasticloadbalancing/
  11. T. C. Chieu, A. Mohindra, A.A. Karve, A. Segal, "Dynamic Scaling of Web Applications in a Virtualized Cloud Computing Environment", ICEBE 2009: 281-286
  12. Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale: Elastic resource scaling for multi-tenant cloud systems. SOCC '11, 2011.
  13. A. Murtazaev, S. Oh, "Sercon: Server Consolidation Algorithm using Live Migration of Virtual machines for Green Computing", IETE Technical Review, Vol 28, Issue 3, 2011
  14. T. Wood, P.J. Shenoy, A. Venkataramani, M.S. Yousif, "Sandpiper: black-box and gray-box resource management for virtual machines", Computer Networks 53(17) (2009) 2923-2938. https://doi.org/10.1016/j.comnet.2009.04.014
  15. H. Li, D. Groep, L. Wolters, "Workload Characteristics of a Multi-cluster Supercomputer", Job Scheduling Strategies for Parallel Processing, New York, NY, Jun. 2004, pp. 176-193
  16. M. Mao, "Cloud Auto-Scaling with Deadline and Budget Constraints", 11th IEEE/ACM International Conference on Grid Computing, 2010
  17. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. "Xen and the Art of Virtualization", In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton Landing, USA, Oct. 2003.
  18. A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. "KVM: The Linux Virtual Machine Monitor", In Proceedings of the Linux Symposium, pages 225-230, 2007
  19. S. Son, S. Jun, "Load Balancing Policy for Xen-based Virtual Desktop Service", Journal of The Korea Society of Computer and Information, Vol. 13, No. 1, January 2008
  20. D. Cho, S. Park, "Development and Implementation of Monitoring System for Management of Virtual Resource Based on Cloud Computing", Journal of The Korea Society of Computer and Information, Vol. 18, No. 2, February 2013 https://doi.org/10.9708/jksci.2013.18.2.041