DOI QR코드

DOI QR Code

Quantitative Analysis of Reaction Products from Glucose and Xylose in Acidic Aqueous Medium by 1H-NMR Spectroscopic Method

산성 수용액 조건에서 포도당과 자일로스 반응 산물의 1H-NMR 분광분석을 이용한 정량 분석

  • Shin, Soo-Jeong (Department of Wood and Paper Science, Chungbuk National University)
  • 신수정 (충북대학교 목재.종이과학과)
  • Received : 2012.12.15
  • Accepted : 2013.07.29
  • Published : 2013.07.25

Abstract

Reaction of glucose and xylose to secondary hydrolysis of concentrated acid hydrolysis was quantitatively analyzed by $^1H$-NMR spectroscopic method. Anomeric hydrogen, furan and formic acid peaks were selected for quantitative analysis. The glucose was converted to the formic acid and the levulinic acid via the 5-hydroxymethylfurfural (HMF) but the xylose was converted to the fufural, which further degraded to the formic acid. The conversion to furans was slower for the glucose than the xylose. But the 5-HMF formed from the glucose was unstable in acidic aqueous medium, resulted in fast conversion to the levulinic acid and the formic acid. The furfural was relatively stable than 5-HMF at acidic aqueous medium.

진한 산 가수분해 반응 중 2차 가수분해 조건에서 포도당과 자일로스의 반응을 수소 핵자기 공명 분광분석을 통하여 정량적으로 분석하였다. 정량분석은 아노머성 수소, 퓨란과 개미산의 특징적인 피크를 이용하여 실시하였다. 진한 산 가수분해의 2차 가수분해 조건에서 포도당의 일부가 5-hydroxymethylfufural (5-HMF) 중간 구조를 거쳐 levulinic acid와 개미산으로 분해되었음을 확인하였다. 자일로스는 furfural 중간 구조를 거쳐 개미산으로 분해가 되었으며, 포도당은 자일로스보다 2차 가수분해 조건에서 산에 의한 퓨란계 화합물의 전이가 느리게 전환되어 단당의 안정성이 높았다. 퓨란계 화합물로 전환된 이후, 산에 민감한 5-HMF는 쉽게 formic acid와 levulinic acid로 전환되었지만, furfural은 formic acid로의 분해 반응이 더디게 진행되어 furfural의 농도가 5-HMF보다 상대적으로 높게 나타났다.

Keywords

References

  1. Aguilar, R., J. A. Ramirez, G. Garrote, and M. Vazquez, 2002. Kinetic study of the acid hydrolysis of sugar cane bagasse. J. Food Eng. 55: 309-318. https://doi.org/10.1016/S0260-8774(02)00106-1
  2. Asghari, F. S. and H. Yoshida, 2007. Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxymethylfurfural, levulinic and formic acids. Ind. Eng. Chem. Res. 46: 7703-7710. https://doi.org/10.1021/ie061673e
  3. Borchardt, L. G. and C. V. Piper, 1970. A gas chromatographic method for carbohydrate as alditol- acetates. TAPPI J. 53(2): 257-260.
  4. Cho, D. H., S.-J. Shin, Y. Bae, C. Park, and Y. H. Kim, 2010. Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis. Bioresour. Technol. 101: 4947-4951. https://doi.org/10.1016/j.biortech.2009.11.014
  5. Crowell, E. P. and B. B. Burnett, 1967. Determination of the carbohydrate composition of wood pulps by gas chromatography of alditol acetates. Anal. Chem. 39: 121-124. https://doi.org/10.1021/ac60245a006
  6. Davis, M. W. 1988. A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulpsed amperometric detection (HPAEC/PAD). J. Wood Chem. Technol. 18: 235-252.
  7. Kiemle, D. J., A. J. Stipanovic, and A. J. Mayo in Hemicelluloses : science and technology, Gatenholm, P. and Tenkanen, M. Eds., pp. 122-139. American Chemical Society, Washington D.C. (2004)
  8. McKibbins, S. W., J. F. Harris, J. F. Saeman, and W. K. Neil, 1962. Kinetics of the acid-catalyzed conversion of glucose to 5-hydroxymethyl-2-furfuraldehyde and levulinic acid. Forest Prod. J. 12: 17-23.
  9. Rasrendra, C. B., I. G. B. N. Makertihartha, S. Adisasmito, and H. J. Heeres, 2010. Green chemicals from d-glucose: systematic studies on catalytic effects of inorganic salts on the chemo-selectivity and yield in aqueous solutions. Top. Catal. 53: 1241-1247. https://doi.org/10.1007/s11244-010-9570-0
  10. Root, D. F, J. F. Saeman, J. F. Harris, and W. K. Neil, 1959. Kinetics of the acid catalyzed conversion of xylose to furfural, Forest Prod. J. 9: 158-164.
  11. Shin, S.-J. and N.-S. Cho, 2008. Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy. Cellulose 15: 255-260. https://doi.org/10.1007/s10570-007-9156-6
  12. Smith, F. and R. Montgomery, 1956. End group analysis of polysaccharides. Method Biochem. Anal. 3: 153-212. https://doi.org/10.1002/9780470110195.ch6

Cited by

  1. The effect of hemicelluloses and lignin on acid hydrolysis of cellulose vol.77, 2014, https://doi.org/10.1016/j.energy.2014.01.104